Detailed syntax breakdown of Definition df-exid
| Step | Hyp | Ref
| Expression |
| 1 | | cexid 33643 |
. 2
class
ExId |
| 2 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 3 | 2 | cv 1482 |
. . . . . . . 8
class 𝑥 |
| 4 | | vy |
. . . . . . . . 9
setvar 𝑦 |
| 5 | 4 | cv 1482 |
. . . . . . . 8
class 𝑦 |
| 6 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 7 | 6 | cv 1482 |
. . . . . . . 8
class 𝑔 |
| 8 | 3, 5, 7 | co 6650 |
. . . . . . 7
class (𝑥𝑔𝑦) |
| 9 | 8, 5 | wceq 1483 |
. . . . . 6
wff (𝑥𝑔𝑦) = 𝑦 |
| 10 | 5, 3, 7 | co 6650 |
. . . . . . 7
class (𝑦𝑔𝑥) |
| 11 | 10, 5 | wceq 1483 |
. . . . . 6
wff (𝑦𝑔𝑥) = 𝑦 |
| 12 | 9, 11 | wa 384 |
. . . . 5
wff ((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) |
| 13 | 7 | cdm 5114 |
. . . . . 6
class dom 𝑔 |
| 14 | 13 | cdm 5114 |
. . . . 5
class dom dom
𝑔 |
| 15 | 12, 4, 14 | wral 2912 |
. . . 4
wff
∀𝑦 ∈ dom
dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) |
| 16 | 15, 2, 14 | wrex 2913 |
. . 3
wff
∃𝑥 ∈ dom
dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) |
| 17 | 16, 6 | cab 2608 |
. 2
class {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} |
| 18 | 1, 17 | wceq 1483 |
1
wff ExId =
{𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} |