![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isexid | Structured version Visualization version GIF version |
Description: The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isexid.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
isexid | ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5324 | . . . . 5 ⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) | |
2 | 1 | dmeqd 5326 | . . . 4 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = dom dom 𝐺) |
3 | isexid.1 | . . . 4 ⊢ 𝑋 = dom dom 𝐺 | |
4 | 2, 3 | syl6eqr 2674 | . . 3 ⊢ (𝑔 = 𝐺 → dom dom 𝑔 = 𝑋) |
5 | oveq 6656 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦)) | |
6 | 5 | eqeq1d 2624 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑦) = 𝑦 ↔ (𝑥𝐺𝑦) = 𝑦)) |
7 | oveq 6656 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
8 | 7 | eqeq1d 2624 | . . . . 5 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑦 ↔ (𝑦𝐺𝑥) = 𝑦)) |
9 | 6, 8 | anbi12d 747 | . . . 4 ⊢ (𝑔 = 𝐺 → (((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
10 | 4, 9 | raleqbidv 3152 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
11 | 4, 10 | rexeqbidv 3153 | . 2 ⊢ (𝑔 = 𝐺 → (∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦) ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
12 | df-exid 33644 | . 2 ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | |
13 | 11, 12 | elab2g 3353 | 1 ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 dom cdm 5114 (class class class)co 6650 ExId cexid 33643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-exid 33644 |
This theorem is referenced by: opidonOLD 33651 isexid2 33654 ismndo 33671 exidres 33677 |
Copyright terms: Public domain | W3C validator |