Detailed syntax breakdown of Definition df-fi
| Step | Hyp | Ref
| Expression |
| 1 | | cfi 8316 |
. 2
class
fi |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | | vz |
. . . . . . 7
setvar 𝑧 |
| 5 | 4 | cv 1482 |
. . . . . 6
class 𝑧 |
| 6 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 7 | 6 | cv 1482 |
. . . . . . 7
class 𝑦 |
| 8 | 7 | cint 4475 |
. . . . . 6
class ∩ 𝑦 |
| 9 | 5, 8 | wceq 1483 |
. . . . 5
wff 𝑧 = ∩
𝑦 |
| 10 | 2 | cv 1482 |
. . . . . . 7
class 𝑥 |
| 11 | 10 | cpw 4158 |
. . . . . 6
class 𝒫
𝑥 |
| 12 | | cfn 7955 |
. . . . . 6
class
Fin |
| 13 | 11, 12 | cin 3573 |
. . . . 5
class
(𝒫 𝑥 ∩
Fin) |
| 14 | 9, 6, 13 | wrex 2913 |
. . . 4
wff
∃𝑦 ∈
(𝒫 𝑥 ∩
Fin)𝑧 = ∩ 𝑦 |
| 15 | 14, 4 | cab 2608 |
. . 3
class {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦} |
| 16 | 2, 3, 15 | cmpt 4729 |
. 2
class (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
| 17 | 1, 16 | wceq 1483 |
1
wff fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |