| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fin5 | Structured version Visualization version GIF version | ||
| Description: A set is V-finite iff it behaves finitely under +𝑐. Definition V of [Levy58] p. 3. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-fin5 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfin5 9104 | . 2 class FinV | |
| 2 | vx | . . . . . 6 setvar 𝑥 | |
| 3 | 2 | cv 1482 | . . . . 5 class 𝑥 |
| 4 | c0 3915 | . . . . 5 class ∅ | |
| 5 | 3, 4 | wceq 1483 | . . . 4 wff 𝑥 = ∅ |
| 6 | ccda 8989 | . . . . . 6 class +𝑐 | |
| 7 | 3, 3, 6 | co 6650 | . . . . 5 class (𝑥 +𝑐 𝑥) |
| 8 | csdm 7954 | . . . . 5 class ≺ | |
| 9 | 3, 7, 8 | wbr 4653 | . . . 4 wff 𝑥 ≺ (𝑥 +𝑐 𝑥) |
| 10 | 5, 9 | wo 383 | . . 3 wff (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥)) |
| 11 | 10, 2 | cab 2608 | . 2 class {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} |
| 12 | 1, 11 | wceq 1483 | 1 wff FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isfin5 9121 |
| Copyright terms: Public domain | W3C validator |