MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin5 Structured version   Visualization version   GIF version

Theorem isfin5 9121
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin5 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))

Proof of Theorem isfin5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-fin5 9111 . . 3 FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))}
21eleq2i 2693 . 2 (𝐴 ∈ FinV𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))})
3 id 22 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
4 0ex 4790 . . . . 5 ∅ ∈ V
53, 4syl6eqel 2709 . . . 4 (𝐴 = ∅ → 𝐴 ∈ V)
6 relsdom 7962 . . . . 5 Rel ≺
76brrelexi 5158 . . . 4 (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V)
85, 7jaoi 394 . . 3 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → 𝐴 ∈ V)
9 eqeq1 2626 . . . 4 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
10 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
1110, 10oveq12d 6668 . . . . 5 (𝑥 = 𝐴 → (𝑥 +𝑐 𝑥) = (𝐴 +𝑐 𝐴))
1210, 11breq12d 4666 . . . 4 (𝑥 = 𝐴 → (𝑥 ≺ (𝑥 +𝑐 𝑥) ↔ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
139, 12orbi12d 746 . . 3 (𝑥 = 𝐴 → ((𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥)) ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))))
148, 13elab3 3358 . 2 (𝐴 ∈ {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 +𝑐 𝑥))} ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
152, 14bitri 264 1 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1483  wcel 1990  {cab 2608  Vcvv 3200  c0 3915   class class class wbr 4653  (class class class)co 6650  csdm 7954   +𝑐 ccda 8989  FinVcfin5 9104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-iota 5851  df-fv 5896  df-ov 6653  df-dom 7957  df-sdom 7958  df-fin5 9111
This theorem is referenced by:  isfin5-2  9213  fin56  9215
  Copyright terms: Public domain W3C validator