Detailed syntax breakdown of Definition df-gdiv
| Step | Hyp | Ref
| Expression |
| 1 | | cgs 27346 |
. 2
class
/𝑔 |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cgr 27343 |
. . 3
class
GrpOp |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vy |
. . . 4
setvar 𝑦 |
| 6 | 2 | cv 1482 |
. . . . 5
class 𝑔 |
| 7 | 6 | crn 5115 |
. . . 4
class ran 𝑔 |
| 8 | 4 | cv 1482 |
. . . . 5
class 𝑥 |
| 9 | 5 | cv 1482 |
. . . . . 6
class 𝑦 |
| 10 | | cgn 27345 |
. . . . . . 7
class
inv |
| 11 | 6, 10 | cfv 5888 |
. . . . . 6
class
(inv‘𝑔) |
| 12 | 9, 11 | cfv 5888 |
. . . . 5
class
((inv‘𝑔)‘𝑦) |
| 13 | 8, 12, 6 | co 6650 |
. . . 4
class (𝑥𝑔((inv‘𝑔)‘𝑦)) |
| 14 | 4, 5, 7, 7, 13 | cmpt2 6652 |
. . 3
class (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) |
| 15 | 2, 3, 14 | cmpt 4729 |
. 2
class (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |
| 16 | 1, 15 | wceq 1483 |
1
wff
/𝑔 = (𝑔
∈ GrpOp ↦ (𝑥
∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |