MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivfval Structured version   Visualization version   GIF version

Theorem grpodivfval 27388
Description: Group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (inv‘𝐺)
grpdiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivfval (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦)

Proof of Theorem grpodivfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpdiv.3 . 2 𝐷 = ( /𝑔𝐺)
2 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7098 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3syl5eqel 2705 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mpt2exga 7246 . . . 4 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V)
64, 4, 5syl2anc 693 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V)
7 rneq 5351 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2syl6eqr 2674 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 id 22 . . . . . 6 (𝑔 = 𝐺𝑔 = 𝐺)
10 eqidd 2623 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
11 fveq2 6191 . . . . . . . 8 (𝑔 = 𝐺 → (inv‘𝑔) = (inv‘𝐺))
12 grpdiv.2 . . . . . . . 8 𝑁 = (inv‘𝐺)
1311, 12syl6eqr 2674 . . . . . . 7 (𝑔 = 𝐺 → (inv‘𝑔) = 𝑁)
1413fveq1d 6193 . . . . . 6 (𝑔 = 𝐺 → ((inv‘𝑔)‘𝑦) = (𝑁𝑦))
159, 10, 14oveq123d 6671 . . . . 5 (𝑔 = 𝐺 → (𝑥𝑔((inv‘𝑔)‘𝑦)) = (𝑥𝐺(𝑁𝑦)))
168, 8, 15mpt2eq123dv 6717 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
17 df-gdiv 27350 . . . 4 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
1816, 17fvmptg 6280 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))) ∈ V) → ( /𝑔𝐺) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
196, 18mpdan 702 . 2 (𝐺 ∈ GrpOp → ( /𝑔𝐺) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
201, 19syl5eq 2668 1 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652  GrpOpcgr 27343  invcgn 27345   /𝑔 cgs 27346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-gdiv 27350
This theorem is referenced by:  grpodivval  27389  grpodivf  27392  nvmfval  27499
  Copyright terms: Public domain W3C validator