MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 17702
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 17700 . 2 class 𝑔
2 cgim 17699 . . . 4 class GrpIso
32ccnv 5113 . . 3 class GrpIso
4 cvv 3200 . . . 4 class V
5 c1o 7553 . . . 4 class 1𝑜
64, 5cdif 3571 . . 3 class (V ∖ 1𝑜)
73, 6cima 5117 . 2 class ( GrpIso “ (V ∖ 1𝑜))
81, 7wceq 1483 1 wff 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  17711  gicer  17718  gicerOLD  17719
  Copyright terms: Public domain W3C validator