MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicerOLD Structured version   Visualization version   GIF version

Theorem gicerOLD 17719
Description: Obsolete proof of gicer 17718 as of 1-May-2021. Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
gicerOLD 𝑔 Er Grp

Proof of Theorem gicerOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gic 17702 . . . . . 6 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
2 cnvimass 5485 . . . . . . 7 ( GrpIso “ (V ∖ 1𝑜)) ⊆ dom GrpIso
3 gimfn 17703 . . . . . . . 8 GrpIso Fn (Grp × Grp)
4 fndm 5990 . . . . . . . 8 ( GrpIso Fn (Grp × Grp) → dom GrpIso = (Grp × Grp))
53, 4ax-mp 5 . . . . . . 7 dom GrpIso = (Grp × Grp)
62, 5sseqtri 3637 . . . . . 6 ( GrpIso “ (V ∖ 1𝑜)) ⊆ (Grp × Grp)
71, 6eqsstri 3635 . . . . 5 𝑔 ⊆ (Grp × Grp)
8 relxp 5227 . . . . 5 Rel (Grp × Grp)
9 relss 5206 . . . . 5 ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 ))
107, 8, 9mp2 9 . . . 4 Rel ≃𝑔
1110a1i 11 . . 3 (⊤ → Rel ≃𝑔 )
12 gicsym 17716 . . . 4 (𝑥𝑔 𝑦𝑦𝑔 𝑥)
1312adantl 482 . . 3 ((⊤ ∧ 𝑥𝑔 𝑦) → 𝑦𝑔 𝑥)
14 gictr 17717 . . . 4 ((𝑥𝑔 𝑦𝑦𝑔 𝑧) → 𝑥𝑔 𝑧)
1514adantl 482 . . 3 ((⊤ ∧ (𝑥𝑔 𝑦𝑦𝑔 𝑧)) → 𝑥𝑔 𝑧)
16 gicref 17713 . . . . 5 (𝑥 ∈ Grp → 𝑥𝑔 𝑥)
17 giclcl 17714 . . . . 5 (𝑥𝑔 𝑥𝑥 ∈ Grp)
1816, 17impbii 199 . . . 4 (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥)
1918a1i 11 . . 3 (⊤ → (𝑥 ∈ Grp ↔ 𝑥𝑔 𝑥))
2011, 13, 15, 19iserd 7768 . 2 (⊤ → ≃𝑔 Er Grp)
2120trud 1493 1 𝑔 Er Grp
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  Vcvv 3200  cdif 3571  wss 3574   class class class wbr 4653   × cxp 5112  ccnv 5113  dom cdm 5114  cima 5117  Rel wrel 5119   Fn wfn 5883  1𝑜c1o 7553   Er wer 7739  Grpcgrp 17422   GrpIso cgim 17699  𝑔 cgic 17700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-ghm 17658  df-gim 17701  df-gic 17702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator