| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hil | Structured version Visualization version GIF version | ||
| Description: Define class of all Hilbert spaces. Based on Proposition 4.5, p. 176, Gudrun Kalmbach, Quantum Measures and Spaces, Kluwer, Dordrecht, 1998. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-hil | ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (CSubSp‘ℎ)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chs 20045 | . 2 class Hil | |
| 2 | vh | . . . . . . 7 setvar ℎ | |
| 3 | 2 | cv 1482 | . . . . . 6 class ℎ |
| 4 | cpj 20044 | . . . . . 6 class proj | |
| 5 | 3, 4 | cfv 5888 | . . . . 5 class (proj‘ℎ) |
| 6 | 5 | cdm 5114 | . . . 4 class dom (proj‘ℎ) |
| 7 | ccss 20005 | . . . . 5 class CSubSp | |
| 8 | 3, 7 | cfv 5888 | . . . 4 class (CSubSp‘ℎ) |
| 9 | 6, 8 | wceq 1483 | . . 3 wff dom (proj‘ℎ) = (CSubSp‘ℎ) |
| 10 | cphl 19969 | . . 3 class PreHil | |
| 11 | 9, 2, 10 | crab 2916 | . 2 class {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (CSubSp‘ℎ)} |
| 12 | 1, 11 | wceq 1483 | 1 wff Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (CSubSp‘ℎ)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ishil 20062 |
| Copyright terms: Public domain | W3C validator |