MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishil Structured version   Visualization version   GIF version

Theorem ishil 20062
Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011.) (Revised by Mario Carneiro, 22-Jun-2014.)
Hypotheses
Ref Expression
ishil.k 𝐾 = (proj‘𝐻)
ishil.c 𝐶 = (CSubSp‘𝐻)
Assertion
Ref Expression
ishil (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))

Proof of Theorem ishil
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5 ( = 𝐻 → (proj‘) = (proj‘𝐻))
2 ishil.k . . . . 5 𝐾 = (proj‘𝐻)
31, 2syl6eqr 2674 . . . 4 ( = 𝐻 → (proj‘) = 𝐾)
43dmeqd 5326 . . 3 ( = 𝐻 → dom (proj‘) = dom 𝐾)
5 fveq2 6191 . . . 4 ( = 𝐻 → (CSubSp‘) = (CSubSp‘𝐻))
6 ishil.c . . . 4 𝐶 = (CSubSp‘𝐻)
75, 6syl6eqr 2674 . . 3 ( = 𝐻 → (CSubSp‘) = 𝐶)
84, 7eqeq12d 2637 . 2 ( = 𝐻 → (dom (proj‘) = (CSubSp‘) ↔ dom 𝐾 = 𝐶))
9 df-hil 20048 . 2 Hil = { ∈ PreHil ∣ dom (proj‘) = (CSubSp‘)}
108, 9elrab2 3366 1 (𝐻 ∈ Hil ↔ (𝐻 ∈ PreHil ∧ dom 𝐾 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  dom cdm 5114  cfv 5888  PreHilcphl 19969  CSubSpccss 20005  projcpj 20044  Hilchs 20045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-hil 20048
This theorem is referenced by:  ishil2  20063  hlhil  23214
  Copyright terms: Public domain W3C validator