| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-hmph | Structured version Visualization version GIF version | ||
| Description: Definition of the relation 𝑥 is homeomorphic to 𝑦. (Contributed by FL, 14-Feb-2007.) |
| Ref | Expression |
|---|---|
| df-hmph | ⊢ ≃ = (◡Homeo “ (V ∖ 1𝑜)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chmph 21557 | . 2 class ≃ | |
| 2 | chmeo 21556 | . . . 4 class Homeo | |
| 3 | 2 | ccnv 5113 | . . 3 class ◡Homeo |
| 4 | cvv 3200 | . . . 4 class V | |
| 5 | c1o 7553 | . . . 4 class 1𝑜 | |
| 6 | 4, 5 | cdif 3571 | . . 3 class (V ∖ 1𝑜) |
| 7 | 3, 6 | cima 5117 | . 2 class (◡Homeo “ (V ∖ 1𝑜)) |
| 8 | 1, 7 | wceq 1483 | 1 wff ≃ = (◡Homeo “ (V ∖ 1𝑜)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: hmph 21579 hmphtop 21581 hmpher 21587 |
| Copyright terms: Public domain | W3C validator |