![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 21559 | . . . . . 6 ⊢ ≃ = (◡Homeo “ (V ∖ 1𝑜)) | |
2 | cnvimass 5485 | . . . . . . 7 ⊢ (◡Homeo “ (V ∖ 1𝑜)) ⊆ dom Homeo | |
3 | hmeofn 21560 | . . . . . . . 8 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 5990 | . . . . . . . 8 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 3637 | . . . . . 6 ⊢ (◡Homeo “ (V ∖ 1𝑜)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 3635 | . . . . 5 ⊢ ≃ ⊆ (Top × Top) |
8 | relxp 5227 | . . . . 5 ⊢ Rel (Top × Top) | |
9 | relss 5206 | . . . . 5 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
10 | 7, 8, 9 | mp2 9 | . . . 4 ⊢ Rel ≃ |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → Rel ≃ ) |
12 | hmphsym 21585 | . . . 4 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
13 | 12 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ≃ 𝑦) → 𝑦 ≃ 𝑥) |
14 | hmphtr 21586 | . . . 4 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
15 | 14 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧)) → 𝑥 ≃ 𝑧) |
16 | hmphref 21584 | . . . . 5 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
17 | hmphtop1 21582 | . . . . 5 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
18 | 16, 17 | impbii 199 | . . . 4 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
19 | 18 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥)) |
20 | 11, 13, 15, 19 | iserd 7768 | . 2 ⊢ (⊤ → ≃ Er Top) |
21 | 20 | trud 1493 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 class class class wbr 4653 × cxp 5112 ◡ccnv 5113 dom cdm 5114 “ cima 5117 Rel wrel 5119 Fn wfn 5883 1𝑜c1o 7553 Er wer 7739 Topctop 20698 Homeochmeo 21556 ≃ chmph 21557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-1o 7560 df-er 7742 df-map 7859 df-top 20699 df-topon 20716 df-cn 21031 df-hmeo 21558 df-hmph 21559 |
This theorem is referenced by: ismntop 30070 |
Copyright terms: Public domain | W3C validator |