Detailed syntax breakdown of Definition df-igam
| Step | Hyp | Ref
| Expression |
| 1 | | cigam 24744 |
. 2
class
1/Γ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cc 9934 |
. . 3
class
ℂ |
| 4 | 2 | cv 1482 |
. . . . 5
class 𝑥 |
| 5 | | cz 11377 |
. . . . . 6
class
ℤ |
| 6 | | cn 11020 |
. . . . . 6
class
ℕ |
| 7 | 5, 6 | cdif 3571 |
. . . . 5
class (ℤ
∖ ℕ) |
| 8 | 4, 7 | wcel 1990 |
. . . 4
wff 𝑥 ∈ (ℤ ∖
ℕ) |
| 9 | | cc0 9936 |
. . . 4
class
0 |
| 10 | | c1 9937 |
. . . . 5
class
1 |
| 11 | | cgam 24743 |
. . . . . 6
class
Γ |
| 12 | 4, 11 | cfv 5888 |
. . . . 5
class
(Γ‘𝑥) |
| 13 | | cdiv 10684 |
. . . . 5
class
/ |
| 14 | 10, 12, 13 | co 6650 |
. . . 4
class (1 /
(Γ‘𝑥)) |
| 15 | 8, 9, 14 | cif 4086 |
. . 3
class if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥))) |
| 16 | 2, 3, 15 | cmpt 4729 |
. 2
class (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖
ℕ), 0, (1 / (Γ‘𝑥)))) |
| 17 | 1, 16 | wceq 1483 |
1
wff 1/Γ =
(𝑥 ∈ ℂ ↦
if(𝑥 ∈ (ℤ
∖ ℕ), 0, (1 / (Γ‘𝑥)))) |