MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamval Structured version   Visualization version   GIF version

Theorem igamval 24773
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamval (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))

Proof of Theorem igamval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ)))
2 fveq2 6191 . . . 4 (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴))
32oveq2d 6666 . . 3 (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴)))
41, 3ifbieq2d 4111 . 2 (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 df-igam 24747 . 2 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))))
6 c0ex 10034 . . 3 0 ∈ V
7 ovex 6678 . . 3 (1 / (Γ‘𝐴)) ∈ V
86, 7ifex 4156 . 2 if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V
94, 5, 8fvmpt 6282 1 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cdif 3571  ifcif 4086  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   / cdiv 10684  cn 11020  cz 11377  Γcgam 24743  1/Γcigam 24744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-igam 24747
This theorem is referenced by:  igamz  24774  igamgam  24775  igamcl  24778
  Copyright terms: Public domain W3C validator