![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > igamval | Structured version Visualization version GIF version |
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
Ref | Expression |
---|---|
igamval | ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2689 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ))) | |
2 | fveq2 6191 | . . . 4 ⊢ (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴)) | |
3 | 2 | oveq2d 6666 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴))) |
4 | 1, 3 | ifbieq2d 4111 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
5 | df-igam 24747 | . 2 ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | |
6 | c0ex 10034 | . . 3 ⊢ 0 ∈ V | |
7 | ovex 6678 | . . 3 ⊢ (1 / (Γ‘𝐴)) ∈ V | |
8 | 6, 7 | ifex 4156 | . 2 ⊢ if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V |
9 | 4, 5, 8 | fvmpt 6282 | 1 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 ifcif 4086 ‘cfv 5888 (class class class)co 6650 ℂcc 9934 0cc0 9936 1c1 9937 / cdiv 10684 ℕcn 11020 ℤcz 11377 Γcgam 24743 1/Γcigam 24744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-mulcl 9998 ax-i2m1 10004 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-igam 24747 |
This theorem is referenced by: igamz 24774 igamgam 24775 igamcl 24778 |
Copyright terms: Public domain | W3C validator |