| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-iop | Structured version Visualization version GIF version | ||
| Description: Define the Hilbert space identity operator. See dfiop2 28612 for alternate definition. (Contributed by NM, 15-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-iop | ⊢ Iop = (projℎ‘ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chio 27801 | . 2 class Iop | |
| 2 | chil 27776 | . . 3 class ℋ | |
| 3 | cpjh 27794 | . . 3 class projℎ | |
| 4 | 2, 3 | cfv 5888 | . 2 class (projℎ‘ ℋ) |
| 5 | 1, 4 | wceq 1483 | 1 wff Iop = (projℎ‘ ℋ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfiop2 28612 hoival 28614 hoid1i 28648 hoid1ri 28649 pjclem1 29054 pjclem3 29056 pjci 29059 |
| Copyright terms: Public domain | W3C validator |