Detailed syntax breakdown of Definition df-linc
| Step | Hyp | Ref
| Expression |
| 1 | | clinc 42193 |
. 2
class
linC |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | | vs |
. . . 4
setvar 𝑠 |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | 2 | cv 1482 |
. . . . . . 7
class 𝑚 |
| 7 | | csca 15944 |
. . . . . . 7
class
Scalar |
| 8 | 6, 7 | cfv 5888 |
. . . . . 6
class
(Scalar‘𝑚) |
| 9 | | cbs 15857 |
. . . . . 6
class
Base |
| 10 | 8, 9 | cfv 5888 |
. . . . 5
class
(Base‘(Scalar‘𝑚)) |
| 11 | 5 | cv 1482 |
. . . . 5
class 𝑣 |
| 12 | | cmap 7857 |
. . . . 5
class
↑𝑚 |
| 13 | 10, 11, 12 | co 6650 |
. . . 4
class
((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) |
| 14 | 6, 9 | cfv 5888 |
. . . . 5
class
(Base‘𝑚) |
| 15 | 14 | cpw 4158 |
. . . 4
class 𝒫
(Base‘𝑚) |
| 16 | | vx |
. . . . . 6
setvar 𝑥 |
| 17 | 16 | cv 1482 |
. . . . . . . 8
class 𝑥 |
| 18 | 4 | cv 1482 |
. . . . . . . 8
class 𝑠 |
| 19 | 17, 18 | cfv 5888 |
. . . . . . 7
class (𝑠‘𝑥) |
| 20 | | cvsca 15945 |
. . . . . . . 8
class
·𝑠 |
| 21 | 6, 20 | cfv 5888 |
. . . . . . 7
class (
·𝑠 ‘𝑚) |
| 22 | 19, 17, 21 | co 6650 |
. . . . . 6
class ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥) |
| 23 | 16, 11, 22 | cmpt 4729 |
. . . . 5
class (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥)) |
| 24 | | cgsu 16101 |
. . . . 5
class
Σg |
| 25 | 6, 23, 24 | co 6650 |
. . . 4
class (𝑚 Σg
(𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))) |
| 26 | 4, 5, 13, 15, 25 | cmpt2 6652 |
. . 3
class (𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥)))) |
| 27 | 2, 3, 26 | cmpt 4729 |
. 2
class (𝑚 ∈ V ↦ (𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))))) |
| 28 | 1, 27 | wceq 1483 |
1
wff linC =
(𝑚 ∈ V ↦ (𝑠 ∈
((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))))) |