![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dflinc2 | Structured version Visualization version GIF version |
Description: Alternative definition of linear combinations using the function operation. (Contributed by AV, 1-Apr-2019.) |
Ref | Expression |
---|---|
dflinc2 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-linc 42195 | . 2 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) | |
2 | elmapfn 7880 | . . . . . . . 8 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) → 𝑠 Fn 𝑣) | |
3 | 2 | adantr 481 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑠 Fn 𝑣) |
4 | fnresi 6008 | . . . . . . . 8 ⊢ ( I ↾ 𝑣) Fn 𝑣 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → ( I ↾ 𝑣) Fn 𝑣) |
6 | vex 3203 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → 𝑣 ∈ V) |
8 | inidm 3822 | . . . . . . 7 ⊢ (𝑣 ∩ 𝑣) = 𝑣 | |
9 | eqidd 2623 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (𝑠‘𝑖) = (𝑠‘𝑖)) | |
10 | fvresi 6439 | . . . . . . . 8 ⊢ (𝑖 ∈ 𝑣 → (( I ↾ 𝑣)‘𝑖) = 𝑖) | |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ (((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) ∧ 𝑖 ∈ 𝑣) → (( I ↾ 𝑣)‘𝑖) = 𝑖) |
12 | 3, 5, 7, 7, 8, 9, 11 | offval 6904 | . . . . . 6 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)) = (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) |
13 | 12 | eqcomd 2628 | . . . . 5 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)) = (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))) |
14 | 13 | oveq2d 6666 | . . . 4 ⊢ ((𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣) ∧ 𝑣 ∈ 𝒫 (Base‘𝑚)) → (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))) = (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
15 | 14 | mpt2eq3ia 6720 | . . 3 ⊢ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖)))) = (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣)))) |
16 | 15 | mpteq2i 4741 | . 2 ⊢ (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑖 ∈ 𝑣 ↦ ((𝑠‘𝑖)( ·𝑠 ‘𝑚)𝑖))))) = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
17 | 1, 16 | eqtri 2644 | 1 ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑠 ∘𝑓 ( ·𝑠 ‘𝑚)( I ↾ 𝑣))))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 𝒫 cpw 4158 ↦ cmpt 4729 I cid 5023 ↾ cres 5116 Fn wfn 5883 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ∘𝑓 cof 6895 ↑𝑚 cmap 7857 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 Σg cgsu 16101 linC clinc 42193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-1st 7168 df-2nd 7169 df-map 7859 df-linc 42195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |