MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lindf Structured version   Visualization version   GIF version

Definition df-lindf 20145
Description: An independent family is a family of vectors, no nonzero multiple of which can be expressed as a linear combination of other elements of the family. This is almost, but not quite, the same as a function into an independent set.

This is a defined concept because it matters in many cases whether independence is taken at a set or family level. For instance, a number is transcedental iff its nonzero powers are linearly independent. Is 1 transcedental? It has only one nonzero power.

We can almost define family independence as a family of unequal elements with independent range, as islindf3 20165, but taking that as primitive would lead to unpleasant corner case behavior with the zero ring.

This is equivalent to the common definition of having no nontrivial representations of zero (islindf4 20177) and only one representation for each element of the range (islindf5 20178). (Contributed by Stefan O'Rear, 24-Feb-2015.)

Assertion
Ref Expression
df-lindf LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Distinct variable group:   𝑤,𝑓,𝑠,𝑥,𝑘

Detailed syntax breakdown of Definition df-lindf
StepHypRef Expression
1 clindf 20143 . 2 class LIndF
2 vf . . . . . . 7 setvar 𝑓
32cv 1482 . . . . . 6 class 𝑓
43cdm 5114 . . . . 5 class dom 𝑓
5 vw . . . . . . 7 setvar 𝑤
65cv 1482 . . . . . 6 class 𝑤
7 cbs 15857 . . . . . 6 class Base
86, 7cfv 5888 . . . . 5 class (Base‘𝑤)
94, 8, 3wf 5884 . . . 4 wff 𝑓:dom 𝑓⟶(Base‘𝑤)
10 vk . . . . . . . . . . 11 setvar 𝑘
1110cv 1482 . . . . . . . . . 10 class 𝑘
12 vx . . . . . . . . . . . 12 setvar 𝑥
1312cv 1482 . . . . . . . . . . 11 class 𝑥
1413, 3cfv 5888 . . . . . . . . . 10 class (𝑓𝑥)
15 cvsca 15945 . . . . . . . . . . 11 class ·𝑠
166, 15cfv 5888 . . . . . . . . . 10 class ( ·𝑠𝑤)
1711, 14, 16co 6650 . . . . . . . . 9 class (𝑘( ·𝑠𝑤)(𝑓𝑥))
1813csn 4177 . . . . . . . . . . . 12 class {𝑥}
194, 18cdif 3571 . . . . . . . . . . 11 class (dom 𝑓 ∖ {𝑥})
203, 19cima 5117 . . . . . . . . . 10 class (𝑓 “ (dom 𝑓 ∖ {𝑥}))
21 clspn 18971 . . . . . . . . . . 11 class LSpan
226, 21cfv 5888 . . . . . . . . . 10 class (LSpan‘𝑤)
2320, 22cfv 5888 . . . . . . . . 9 class ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2417, 23wcel 1990 . . . . . . . 8 wff (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
2524wn 3 . . . . . . 7 wff ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
26 vs . . . . . . . . . 10 setvar 𝑠
2726cv 1482 . . . . . . . . 9 class 𝑠
2827, 7cfv 5888 . . . . . . . 8 class (Base‘𝑠)
29 c0g 16100 . . . . . . . . . 10 class 0g
3027, 29cfv 5888 . . . . . . . . 9 class (0g𝑠)
3130csn 4177 . . . . . . . 8 class {(0g𝑠)}
3228, 31cdif 3571 . . . . . . 7 class ((Base‘𝑠) ∖ {(0g𝑠)})
3325, 10, 32wral 2912 . . . . . 6 wff 𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
3433, 12, 4wral 2912 . . . . 5 wff 𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
35 csca 15944 . . . . . 6 class Scalar
366, 35cfv 5888 . . . . 5 class (Scalar‘𝑤)
3734, 26, 36wsbc 3435 . . . 4 wff [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥})))
389, 37wa 384 . . 3 wff (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))
3938, 2, 5copab 4712 . 2 class {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
401, 39wceq 1483 1 wff LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
Colors of variables: wff setvar class
This definition is referenced by:  rellindf  20147  islindf  20151
  Copyright terms: Public domain W3C validator