![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-mre | Structured version Visualization version GIF version |
Description: Define a Moore
collection, which is a family of subsets of a base set
which preserve arbitrary intersection. Elements of a Moore collection
are termed closed; Moore collections generalize the notion of
closedness from topologies (cldmre 20882) and vector spaces (lssmre 18966)
to the most general setting in which such concepts make sense.
Definition of Moore collection of sets in [Schechter] p. 78. A Moore
collection may also be called a closure system (Section 0.6 in
[Gratzer] p. 23.) The name Moore
collection is after Eliakim Hastings
Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.
See ismre 16250, mresspw 16252, mre1cl 16254 and mreintcl 16255 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 16260); as such the disjoint union of all Moore collections is sometimes considered as ∪ ran Moore, justified by mreunirn 16261. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
df-mre | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmre 16242 | . 2 class Moore | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3200 | . . 3 class V | |
4 | vc | . . . . . 6 setvar 𝑐 | |
5 | 2, 4 | wel 1991 | . . . . 5 wff 𝑥 ∈ 𝑐 |
6 | vs | . . . . . . . . 9 setvar 𝑠 | |
7 | 6 | cv 1482 | . . . . . . . 8 class 𝑠 |
8 | c0 3915 | . . . . . . . 8 class ∅ | |
9 | 7, 8 | wne 2794 | . . . . . . 7 wff 𝑠 ≠ ∅ |
10 | 7 | cint 4475 | . . . . . . . 8 class ∩ 𝑠 |
11 | 4 | cv 1482 | . . . . . . . 8 class 𝑐 |
12 | 10, 11 | wcel 1990 | . . . . . . 7 wff ∩ 𝑠 ∈ 𝑐 |
13 | 9, 12 | wi 4 | . . . . . 6 wff (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
14 | 11 | cpw 4158 | . . . . . 6 class 𝒫 𝑐 |
15 | 13, 6, 14 | wral 2912 | . . . . 5 wff ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐) |
16 | 5, 15 | wa 384 | . . . 4 wff (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐)) |
17 | 2 | cv 1482 | . . . . . 6 class 𝑥 |
18 | 17 | cpw 4158 | . . . . 5 class 𝒫 𝑥 |
19 | 18 | cpw 4158 | . . . 4 class 𝒫 𝒫 𝑥 |
20 | 16, 4, 19 | crab 2916 | . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))} |
21 | 2, 3, 20 | cmpt 4729 | . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
22 | 1, 21 | wceq 1483 | 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝑐))}) |
Colors of variables: wff setvar class |
This definition is referenced by: ismre 16250 fnmre 16251 |
Copyright terms: Public domain | W3C validator |