MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-mre Structured version   Visualization version   GIF version

Definition df-mre 16246
Description: Define a Moore collection, which is a family of subsets of a base set which preserve arbitrary intersection. Elements of a Moore collection are termed closed; Moore collections generalize the notion of closedness from topologies (cldmre 20882) and vector spaces (lssmre 18966) to the most general setting in which such concepts make sense. Definition of Moore collection of sets in [Schechter] p. 78. A Moore collection may also be called a closure system (Section 0.6 in [Gratzer] p. 23.) The name Moore collection is after Eliakim Hastings Moore, who discussed these systems in Part I of [Moore] p. 53 to 76.

See ismre 16250, mresspw 16252, mre1cl 16254 and mreintcl 16255 for the major properties of a Moore collection. Note that a Moore collection uniquely determines its base set (mreuni 16260); as such the disjoint union of all Moore collections is sometimes considered as ran Moore, justified by mreunirn 16261. (Contributed by Stefan O'Rear, 30-Jan-2015.) (Revised by David Moews, 1-May-2017.)

Assertion
Ref Expression
df-mre Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Distinct variable group:   𝑠,𝑐,𝑥

Detailed syntax breakdown of Definition df-mre
StepHypRef Expression
1 cmre 16242 . 2 class Moore
2 vx . . 3 setvar 𝑥
3 cvv 3200 . . 3 class V
4 vc . . . . . 6 setvar 𝑐
52, 4wel 1991 . . . . 5 wff 𝑥𝑐
6 vs . . . . . . . . 9 setvar 𝑠
76cv 1482 . . . . . . . 8 class 𝑠
8 c0 3915 . . . . . . . 8 class
97, 8wne 2794 . . . . . . 7 wff 𝑠 ≠ ∅
107cint 4475 . . . . . . . 8 class 𝑠
114cv 1482 . . . . . . . 8 class 𝑐
1210, 11wcel 1990 . . . . . . 7 wff 𝑠𝑐
139, 12wi 4 . . . . . 6 wff (𝑠 ≠ ∅ → 𝑠𝑐)
1411cpw 4158 . . . . . 6 class 𝒫 𝑐
1513, 6, 14wral 2912 . . . . 5 wff 𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐)
165, 15wa 384 . . . 4 wff (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))
172cv 1482 . . . . . 6 class 𝑥
1817cpw 4158 . . . . 5 class 𝒫 𝑥
1918cpw 4158 . . . 4 class 𝒫 𝒫 𝑥
2016, 4, 19crab 2916 . . 3 class {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))}
212, 3, 20cmpt 4729 . 2 class (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
221, 21wceq 1483 1 wff Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
Colors of variables: wff setvar class
This definition is referenced by:  ismre  16250  fnmre  16251
  Copyright terms: Public domain W3C validator