![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldmre | Structured version Visualization version GIF version |
Description: The closed sets of a topology comprise a Moore system on the points of the topology. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
cldmre | ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | cldss2 20834 | . . 3 ⊢ (Clsd‘𝐽) ⊆ 𝒫 𝑋 |
3 | 2 | a1i 11 | . 2 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ⊆ 𝒫 𝑋) |
4 | 1 | topcld 20839 | . 2 ⊢ (𝐽 ∈ Top → 𝑋 ∈ (Clsd‘𝐽)) |
5 | intcld 20844 | . . . 4 ⊢ ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ (Clsd‘𝐽)) → ∩ 𝑥 ∈ (Clsd‘𝐽)) | |
6 | 5 | ancoms 469 | . . 3 ⊢ ((𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
7 | 6 | 3adant1 1079 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ⊆ (Clsd‘𝐽) ∧ 𝑥 ≠ ∅) → ∩ 𝑥 ∈ (Clsd‘𝐽)) |
8 | 3, 4, 7 | ismred 16262 | 1 ⊢ (𝐽 ∈ Top → (Clsd‘𝐽) ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ⊆ wss 3574 ∅c0 3915 𝒫 cpw 4158 ∪ cuni 4436 ∩ cint 4475 ‘cfv 5888 Moorecmre 16242 Topctop 20698 Clsdccld 20820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fn 5891 df-fv 5896 df-mre 16246 df-top 20699 df-cld 20823 |
This theorem is referenced by: mrccls 20883 cldmreon 20898 mreclatdemoBAD 20900 |
Copyright terms: Public domain | W3C validator |