| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-plt | Structured version Visualization version GIF version | ||
| Description: Define less-than ordering for posets and related structures. Unlike df-base 15863 and df-ple 15961, this is a derived component extractor and not an extensible structure component extractor that defines the poset. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-plt | ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplt 16941 | . 2 class lt | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | cvv 3200 | . . 3 class V | |
| 4 | 2 | cv 1482 | . . . . 5 class 𝑝 |
| 5 | cple 15948 | . . . . 5 class le | |
| 6 | 4, 5 | cfv 5888 | . . . 4 class (le‘𝑝) |
| 7 | cid 5023 | . . . 4 class I | |
| 8 | 6, 7 | cdif 3571 | . . 3 class ((le‘𝑝) ∖ I ) |
| 9 | 2, 3, 8 | cmpt 4729 | . 2 class (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
| 10 | 1, 9 | wceq 1483 | 1 wff lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pltfval 16959 |
| Copyright terms: Public domain | W3C validator |