MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltfval Structured version   Visualization version   GIF version

Theorem pltfval 16959
Description: Value of the less-than relation. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
pltval.l = (le‘𝐾)
pltval.s < = (lt‘𝐾)
Assertion
Ref Expression
pltfval (𝐾𝐴< = ( ∖ I ))

Proof of Theorem pltfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 pltval.s . 2 < = (lt‘𝐾)
2 elex 3212 . . 3 (𝐾𝐴𝐾 ∈ V)
3 fveq2 6191 . . . . . 6 (𝑝 = 𝐾 → (le‘𝑝) = (le‘𝐾))
4 pltval.l . . . . . 6 = (le‘𝐾)
53, 4syl6eqr 2674 . . . . 5 (𝑝 = 𝐾 → (le‘𝑝) = )
65difeq1d 3727 . . . 4 (𝑝 = 𝐾 → ((le‘𝑝) ∖ I ) = ( ∖ I ))
7 df-plt 16958 . . . 4 lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
8 fvex 6201 . . . . . 6 (le‘𝐾) ∈ V
94, 8eqeltri 2697 . . . . 5 ∈ V
10 difexg 4808 . . . . 5 ( ∈ V → ( ∖ I ) ∈ V)
119, 10ax-mp 5 . . . 4 ( ∖ I ) ∈ V
126, 7, 11fvmpt 6282 . . 3 (𝐾 ∈ V → (lt‘𝐾) = ( ∖ I ))
132, 12syl 17 . 2 (𝐾𝐴 → (lt‘𝐾) = ( ∖ I ))
141, 13syl5eq 2668 1 (𝐾𝐴< = ( ∖ I ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571   I cid 5023  cfv 5888  lecple 15948  ltcplt 16941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-plt 16958
This theorem is referenced by:  pltval  16960  opsrtoslem2  19485  relt  19961  oppglt  29654  xrslt  29676  submarchi  29740
  Copyright terms: Public domain W3C validator