MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s4 Structured version   Visualization version   GIF version

Definition df-s4 13595
Description: Define the length 4 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s4 ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)

Detailed syntax breakdown of Definition df-s4
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cC . . 3 class 𝐶
4 cD . . 3 class 𝐷
51, 2, 3, 4cs4 13588 . 2 class ⟨“𝐴𝐵𝐶𝐷”⟩
61, 2, 3cs3 13587 . . 3 class ⟨“𝐴𝐵𝐶”⟩
74cs1 13294 . . 3 class ⟨“𝐷”⟩
8 cconcat 13293 . . 3 class ++
96, 7, 8co 6650 . 2 class (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
105, 9wceq 1483 1 wff ⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  s4eqd  13610  s4cld  13618  s4cli  13627  s4fv0  13640  s4fv1  13641  s4fv2  13642  s4fv3  13643  s4len  13644  s4prop  13655  s1s3  13669  s1s4  13670  s2s2  13674  s4s4  13677  tgcgr4  25426  konigsberglem1  27114  konigsberglem2  27115  konigsberglem3  27116
  Copyright terms: Public domain W3C validator