| Step | Hyp | Ref
| Expression |
| 1 | | tgcgrxfr.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | tgcgrxfr.m |
. . 3
⊢ − =
(dist‘𝐺) |
| 3 | | tgcgrxfr.r |
. . 3
⊢ ∼ =
(cgrG‘𝐺) |
| 4 | | tgcgrxfr.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | | fzo0ssnn0 12548 |
. . . . 5
⊢ (0..^4)
⊆ ℕ0 |
| 6 | | nn0ssre 11296 |
. . . . 5
⊢
ℕ0 ⊆ ℝ |
| 7 | 5, 6 | sstri 3612 |
. . . 4
⊢ (0..^4)
⊆ ℝ |
| 8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → (0..^4) ⊆
ℝ) |
| 9 | | tgcgr4.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 10 | | tgcgr4.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 11 | | tgcgr4.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 12 | | tgcgr4.d |
. . . . . 6
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 13 | 9, 10, 11, 12 | s4cld 13618 |
. . . . 5
⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑃) |
| 14 | | wrdf 13310 |
. . . . 5
⊢
(〈“𝐴𝐵𝐶𝐷”〉 ∈ Word 𝑃 → 〈“𝐴𝐵𝐶𝐷”〉:(0..^(#‘〈“𝐴𝐵𝐶𝐷”〉))⟶𝑃) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉:(0..^(#‘〈“𝐴𝐵𝐶𝐷”〉))⟶𝑃) |
| 16 | | s4len 13644 |
. . . . . 6
⊢
(#‘〈“𝐴𝐵𝐶𝐷”〉) = 4 |
| 17 | 16 | oveq2i 6661 |
. . . . 5
⊢
(0..^(#‘〈“𝐴𝐵𝐶𝐷”〉)) = (0..^4) |
| 18 | 17 | feq2i 6037 |
. . . 4
⊢
(〈“𝐴𝐵𝐶𝐷”〉:(0..^(#‘〈“𝐴𝐵𝐶𝐷”〉))⟶𝑃 ↔ 〈“𝐴𝐵𝐶𝐷”〉:(0..^4)⟶𝑃) |
| 19 | 15, 18 | sylib 208 |
. . 3
⊢ (𝜑 → 〈“𝐴𝐵𝐶𝐷”〉:(0..^4)⟶𝑃) |
| 20 | | tgcgr4.w |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ 𝑃) |
| 21 | | tgcgr4.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 22 | | tgcgr4.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 23 | | tgcgr4.z |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 24 | 20, 21, 22, 23 | s4cld 13618 |
. . . . 5
⊢ (𝜑 → 〈“𝑊𝑋𝑌𝑍”〉 ∈ Word 𝑃) |
| 25 | | wrdf 13310 |
. . . . 5
⊢
(〈“𝑊𝑋𝑌𝑍”〉 ∈ Word 𝑃 → 〈“𝑊𝑋𝑌𝑍”〉:(0..^(#‘〈“𝑊𝑋𝑌𝑍”〉))⟶𝑃) |
| 26 | 24, 25 | syl 17 |
. . . 4
⊢ (𝜑 → 〈“𝑊𝑋𝑌𝑍”〉:(0..^(#‘〈“𝑊𝑋𝑌𝑍”〉))⟶𝑃) |
| 27 | | s4len 13644 |
. . . . . 6
⊢
(#‘〈“𝑊𝑋𝑌𝑍”〉) = 4 |
| 28 | 27 | oveq2i 6661 |
. . . . 5
⊢
(0..^(#‘〈“𝑊𝑋𝑌𝑍”〉)) = (0..^4) |
| 29 | 28 | feq2i 6037 |
. . . 4
⊢
(〈“𝑊𝑋𝑌𝑍”〉:(0..^(#‘〈“𝑊𝑋𝑌𝑍”〉))⟶𝑃 ↔ 〈“𝑊𝑋𝑌𝑍”〉:(0..^4)⟶𝑃) |
| 30 | 26, 29 | sylib 208 |
. . 3
⊢ (𝜑 → 〈“𝑊𝑋𝑌𝑍”〉:(0..^4)⟶𝑃) |
| 31 | 1, 2, 3, 4, 8, 19,
30 | iscgrglt 25409 |
. 2
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉 ∼ 〈“𝑊𝑋𝑌𝑍”〉 ↔ ∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))))) |
| 32 | | fdm 6051 |
. . . . . . . 8
⊢
(〈“𝐴𝐵𝐶𝐷”〉:(0..^4)⟶𝑃 → dom 〈“𝐴𝐵𝐶𝐷”〉 = (0..^4)) |
| 33 | 19, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → dom 〈“𝐴𝐵𝐶𝐷”〉 = (0..^4)) |
| 34 | | 3p1e4 11153 |
. . . . . . . . 9
⊢ (3 + 1) =
4 |
| 35 | 34 | oveq2i 6661 |
. . . . . . . 8
⊢ (0..^(3 +
1)) = (0..^4) |
| 36 | | 3nn0 11310 |
. . . . . . . . . 10
⊢ 3 ∈
ℕ0 |
| 37 | | nn0uz 11722 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 38 | 36, 37 | eleqtri 2699 |
. . . . . . . . 9
⊢ 3 ∈
(ℤ≥‘0) |
| 39 | | fzosplitsn 12576 |
. . . . . . . . 9
⊢ (3 ∈
(ℤ≥‘0) → (0..^(3 + 1)) = ((0..^3) ∪
{3})) |
| 40 | 38, 39 | ax-mp 5 |
. . . . . . . 8
⊢ (0..^(3 +
1)) = ((0..^3) ∪ {3}) |
| 41 | 35, 40 | eqtr3i 2646 |
. . . . . . 7
⊢ (0..^4) =
((0..^3) ∪ {3}) |
| 42 | 33, 41 | syl6eq 2672 |
. . . . . 6
⊢ (𝜑 → dom 〈“𝐴𝐵𝐶𝐷”〉 = ((0..^3) ∪
{3})) |
| 43 | 42 | raleqdv 3144 |
. . . . 5
⊢ (𝜑 → (∀𝑗 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))))) |
| 44 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑗 = 3 → (𝑖 < 𝑗 ↔ 𝑖 < 3)) |
| 45 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑗 = 3 → (〈“𝐴𝐵𝐶𝐷”〉‘𝑗) = (〈“𝐴𝐵𝐶𝐷”〉‘3)) |
| 46 | 45 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑗 = 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3))) |
| 47 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑗 = 3 → (〈“𝑊𝑋𝑌𝑍”〉‘𝑗) = (〈“𝑊𝑋𝑌𝑍”〉‘3)) |
| 48 | 47 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑗 = 3 → ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) |
| 49 | 46, 48 | eqeq12d 2637 |
. . . . . . . 8
⊢ (𝑗 = 3 →
(((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) |
| 50 | 44, 49 | imbi12d 334 |
. . . . . . 7
⊢ (𝑗 = 3 → ((𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 51 | 50 | ralunsn 4422 |
. . . . . 6
⊢ (3 ∈
ℕ0 → (∀𝑗 ∈ ((0..^3) ∪ {3})(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 52 | 36, 51 | ax-mp 5 |
. . . . 5
⊢
(∀𝑗 ∈
((0..^3) ∪ {3})(𝑖 <
𝑗 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 53 | 43, 52 | syl6bb 276 |
. . . 4
⊢ (𝜑 → (∀𝑗 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 54 | 53 | ralbidv 2986 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 55 | 42 | raleqdv 3144 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
∀𝑖 ∈ ((0..^3)
∪ {3})(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 56 | | fzo0ssnn0 12548 |
. . . . . . . . . . . . . . . 16
⊢ (0..^3)
⊆ ℕ0 |
| 57 | 56, 6 | sstri 3612 |
. . . . . . . . . . . . . . 15
⊢ (0..^3)
⊆ ℝ |
| 58 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ (0..^3)) |
| 59 | 57, 58 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 ∈ ℝ) |
| 60 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 = 3) |
| 61 | 6, 36 | sselii 3600 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℝ |
| 62 | 60, 61 | syl6eqel 2709 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑖 ∈ ℝ) |
| 63 | | elfzolt2 12479 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0..^3) → 𝑗 < 3) |
| 64 | 63 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 3) |
| 65 | 64, 60 | breqtrrd 4681 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → 𝑗 < 𝑖) |
| 66 | | ltnsym 10135 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑗 < 𝑖 → ¬ 𝑖 < 𝑗)) |
| 67 | 66 | imp 445 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 ∈ ℝ ∧ 𝑖 ∈ ℝ) ∧ 𝑗 < 𝑖) → ¬ 𝑖 < 𝑗) |
| 68 | 59, 62, 65, 67 | syl21anc 1325 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ¬ 𝑖 < 𝑗) |
| 69 | 68 | pm2.21d 118 |
. . . . . . . . . . . 12
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → (𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗)))) |
| 70 | | tbtru 1494 |
. . . . . . . . . . . 12
⊢ ((𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ((𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ⊤)) |
| 71 | 69, 70 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝑖 = 3 ∧ 𝑗 ∈ (0..^3)) → ((𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ⊤)) |
| 72 | 71 | ralbidva 2985 |
. . . . . . . . . 10
⊢ (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)⊤)) |
| 73 | | 3nn 11186 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℕ |
| 74 | | lbfzo0 12507 |
. . . . . . . . . . . . 13
⊢ (0 ∈
(0..^3) ↔ 3 ∈ ℕ) |
| 75 | 73, 74 | mpbir 221 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0..^3) |
| 76 | 75 | ne0ii 3923 |
. . . . . . . . . . 11
⊢ (0..^3)
≠ ∅ |
| 77 | | r19.3rzv 4064 |
. . . . . . . . . . 11
⊢ ((0..^3)
≠ ∅ → (⊤ ↔ ∀𝑗 ∈ (0..^3)⊤)) |
| 78 | 76, 77 | ax-mp 5 |
. . . . . . . . . 10
⊢ (⊤
↔ ∀𝑗 ∈
(0..^3)⊤) |
| 79 | 72, 78 | syl6bbr 278 |
. . . . . . . . 9
⊢ (𝑖 = 3 → (∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ⊤)) |
| 80 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑖 = 3 → (𝑖 < 3 ↔ 3 < 3)) |
| 81 | 61 | ltnri 10146 |
. . . . . . . . . . . . 13
⊢ ¬ 3
< 3 |
| 82 | 81 | bifal 1497 |
. . . . . . . . . . . 12
⊢ (3 < 3
↔ ⊥) |
| 83 | 80, 82 | syl6bb 276 |
. . . . . . . . . . 11
⊢ (𝑖 = 3 → (𝑖 < 3 ↔ ⊥)) |
| 84 | 83 | imbi1d 331 |
. . . . . . . . . 10
⊢ (𝑖 = 3 → ((𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ (⊥
→ ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 85 | | falim 1498 |
. . . . . . . . . . 11
⊢ (⊥
→ ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) |
| 86 | 85 | bitru 1496 |
. . . . . . . . . 10
⊢ ((⊥
→ ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔
⊤) |
| 87 | 84, 86 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝑖 = 3 → ((𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔
⊤)) |
| 88 | 79, 87 | anbi12d 747 |
. . . . . . . 8
⊢ (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔ (⊤
∧ ⊤))) |
| 89 | | anidm 676 |
. . . . . . . 8
⊢
((⊤ ∧ ⊤) ↔ ⊤) |
| 90 | 88, 89 | syl6bb 276 |
. . . . . . 7
⊢ (𝑖 = 3 → ((∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
⊤)) |
| 91 | 90 | ralunsn 4422 |
. . . . . 6
⊢ (3 ∈
ℕ0 → (∀𝑖 ∈ ((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
(∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ∧
⊤))) |
| 92 | 36, 91 | ax-mp 5 |
. . . . 5
⊢
(∀𝑖 ∈
((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
(∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ∧
⊤)) |
| 93 | | ancom 466 |
. . . . 5
⊢
((∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ∧ ⊤)
↔ (⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 94 | | truan 1501 |
. . . . 5
⊢
((⊤ ∧ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) ↔
∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 95 | 92, 93, 94 | 3bitri 286 |
. . . 4
⊢
(∀𝑖 ∈
((0..^3) ∪ {3})(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 96 | 55, 95 | syl6bb 276 |
. . 3
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 97 | 54, 96 | bitrd 268 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶𝐷”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))))) |
| 98 | | r19.26 3064 |
. . 3
⊢
(∀𝑖 ∈
(0..^3)(∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
(∀𝑖 ∈
(0..^3)∀𝑗 ∈
(0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 99 | 9, 10, 11 | s3cld 13617 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
| 100 | | wrdf 13310 |
. . . . . . . . 9
⊢
(〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 → 〈“𝐴𝐵𝐶”〉:(0..^(#‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
| 101 | 99, 100 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^(#‘〈“𝐴𝐵𝐶”〉))⟶𝑃) |
| 102 | | s3len 13639 |
. . . . . . . . . 10
⊢
(#‘〈“𝐴𝐵𝐶”〉) = 3 |
| 103 | 102 | oveq2i 6661 |
. . . . . . . . 9
⊢
(0..^(#‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
| 104 | 103 | feq2i 6037 |
. . . . . . . 8
⊢
(〈“𝐴𝐵𝐶”〉:(0..^(#‘〈“𝐴𝐵𝐶”〉))⟶𝑃 ↔ 〈“𝐴𝐵𝐶”〉:(0..^3)⟶𝑃) |
| 105 | 101, 104 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉:(0..^3)⟶𝑃) |
| 106 | | fdm 6051 |
. . . . . . 7
⊢
(〈“𝐴𝐵𝐶”〉:(0..^3)⟶𝑃 → dom 〈“𝐴𝐵𝐶”〉 = (0..^3)) |
| 107 | 105, 106 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 〈“𝐴𝐵𝐶”〉 = (0..^3)) |
| 108 | | raleq 3138 |
. . . . . . 7
⊢ (dom
〈“𝐴𝐵𝐶”〉 = (0..^3) →
(∀𝑗 ∈ dom
〈“𝐴𝐵𝐶”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 109 | 105, 106,
108 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))) ↔ ∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 110 | 107, 109 | raleqbidv 3152 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 111 | 57 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0..^3) ⊆
ℝ) |
| 112 | 20, 21, 22 | s3cld 13617 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝑊𝑋𝑌”〉 ∈ Word 𝑃) |
| 113 | | wrdf 13310 |
. . . . . . . 8
⊢
(〈“𝑊𝑋𝑌”〉 ∈ Word 𝑃 → 〈“𝑊𝑋𝑌”〉:(0..^(#‘〈“𝑊𝑋𝑌”〉))⟶𝑃) |
| 114 | 112, 113 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 〈“𝑊𝑋𝑌”〉:(0..^(#‘〈“𝑊𝑋𝑌”〉))⟶𝑃) |
| 115 | | s3len 13639 |
. . . . . . . . 9
⊢
(#‘〈“𝑊𝑋𝑌”〉) = 3 |
| 116 | 115 | oveq2i 6661 |
. . . . . . . 8
⊢
(0..^(#‘〈“𝑊𝑋𝑌”〉)) = (0..^3) |
| 117 | 116 | feq2i 6037 |
. . . . . . 7
⊢
(〈“𝑊𝑋𝑌”〉:(0..^(#‘〈“𝑊𝑋𝑌”〉))⟶𝑃 ↔ 〈“𝑊𝑋𝑌”〉:(0..^3)⟶𝑃) |
| 118 | 114, 117 | sylib 208 |
. . . . . 6
⊢ (𝜑 → 〈“𝑊𝑋𝑌”〉:(0..^3)⟶𝑃) |
| 119 | 1, 2, 3, 4, 111, 105, 118 | iscgrglt 25409 |
. . . . 5
⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉 ↔ ∀𝑖 ∈ dom 〈“𝐴𝐵𝐶”〉∀𝑗 ∈ dom 〈“𝐴𝐵𝐶”〉(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 120 | | df-s4 13595 |
. . . . . . . . . . 11
⊢
〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
| 121 | 120 | fveq1i 6192 |
. . . . . . . . . 10
⊢
(〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑖) |
| 122 | 9 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐴 ∈ 𝑃) |
| 123 | 10 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐵 ∈ 𝑃) |
| 124 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐶 ∈ 𝑃) |
| 125 | 122, 123,
124 | s3cld 13617 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃) |
| 126 | 12 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝐷 ∈ 𝑃) |
| 127 | 126 | s1cld 13383 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 〈“𝐷”〉 ∈ Word 𝑃) |
| 128 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^3)) |
| 129 | 128, 103 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉))) |
| 130 | | ccatval1 13361 |
. . . . . . . . . . 11
⊢
((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ 〈“𝐷”〉 ∈ Word 𝑃 ∧ 𝑖 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉))) → ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑖) = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 131 | 125, 127,
129, 130 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑖) = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 132 | 121, 131 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = (〈“𝐴𝐵𝐶”〉‘𝑖)) |
| 133 | 120 | fveq1i 6192 |
. . . . . . . . . 10
⊢
(〈“𝐴𝐵𝐶𝐷”〉‘𝑗) = ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑗) |
| 134 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^3)) |
| 135 | 134, 103 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉))) |
| 136 | | ccatval1 13361 |
. . . . . . . . . . 11
⊢
((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑃 ∧ 〈“𝐷”〉 ∈ Word 𝑃 ∧ 𝑗 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉))) → ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑗) = (〈“𝐴𝐵𝐶”〉‘𝑗)) |
| 137 | 125, 127,
135, 136 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉)‘𝑗) = (〈“𝐴𝐵𝐶”〉‘𝑗)) |
| 138 | 133, 137 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑗) = (〈“𝐴𝐵𝐶”〉‘𝑗)) |
| 139 | 132, 138 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗))) |
| 140 | | df-s4 13595 |
. . . . . . . . . . 11
⊢
〈“𝑊𝑋𝑌𝑍”〉 = (〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉) |
| 141 | 140 | fveq1i 6192 |
. . . . . . . . . 10
⊢
(〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑖) |
| 142 | 20 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑊 ∈ 𝑃) |
| 143 | 21 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑋 ∈ 𝑃) |
| 144 | 22 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑌 ∈ 𝑃) |
| 145 | 142, 143,
144 | s3cld 13617 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 〈“𝑊𝑋𝑌”〉 ∈ Word 𝑃) |
| 146 | 23 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑍 ∈ 𝑃) |
| 147 | 146 | s1cld 13383 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 〈“𝑍”〉 ∈ Word 𝑃) |
| 148 | 128, 116 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑖 ∈ (0..^(#‘〈“𝑊𝑋𝑌”〉))) |
| 149 | | ccatval1 13361 |
. . . . . . . . . . 11
⊢
((〈“𝑊𝑋𝑌”〉 ∈ Word 𝑃 ∧ 〈“𝑍”〉 ∈ Word 𝑃 ∧ 𝑖 ∈ (0..^(#‘〈“𝑊𝑋𝑌”〉))) → ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑖) = (〈“𝑊𝑋𝑌”〉‘𝑖)) |
| 150 | 145, 147,
148, 149 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑖) = (〈“𝑊𝑋𝑌”〉‘𝑖)) |
| 151 | 141, 150 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = (〈“𝑊𝑋𝑌”〉‘𝑖)) |
| 152 | 140 | fveq1i 6192 |
. . . . . . . . . 10
⊢
(〈“𝑊𝑋𝑌𝑍”〉‘𝑗) = ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑗) |
| 153 | 134, 116 | syl6eleqr 2712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → 𝑗 ∈ (0..^(#‘〈“𝑊𝑋𝑌”〉))) |
| 154 | | ccatval1 13361 |
. . . . . . . . . . 11
⊢
((〈“𝑊𝑋𝑌”〉 ∈ Word 𝑃 ∧ 〈“𝑍”〉 ∈ Word 𝑃 ∧ 𝑗 ∈ (0..^(#‘〈“𝑊𝑋𝑌”〉))) → ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑗) = (〈“𝑊𝑋𝑌”〉‘𝑗)) |
| 155 | 145, 147,
153, 154 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝑊𝑋𝑌”〉 ++ 〈“𝑍”〉)‘𝑗) = (〈“𝑊𝑋𝑌”〉‘𝑗)) |
| 156 | 152, 155 | syl5eq 2668 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑗) = (〈“𝑊𝑋𝑌”〉‘𝑗)) |
| 157 | 151, 156 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))) |
| 158 | 139, 157 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) →
(((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗)) ↔ ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗)))) |
| 159 | 158 | imbi2d 330 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (0..^3) ∧ 𝑗 ∈ (0..^3))) → ((𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ (𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 160 | 159 | 2ralbidva 2988 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ ∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶”〉‘𝑖) − (〈“𝐴𝐵𝐶”〉‘𝑗)) = ((〈“𝑊𝑋𝑌”〉‘𝑖) − (〈“𝑊𝑋𝑌”〉‘𝑗))))) |
| 161 | 110, 119,
160 | 3bitr4rd 301 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ↔ 〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉)) |
| 162 | | fzo0to3tp 12554 |
. . . . . 6
⊢ (0..^3) =
{0, 1, 2} |
| 163 | | raleq 3138 |
. . . . . 6
⊢ ((0..^3)
= {0, 1, 2} → (∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔
∀𝑖 ∈ {0, 1, 2}
(𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 164 | 162, 163 | mp1i 13 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ (0..^3)(𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔
∀𝑖 ∈ {0, 1, 2}
(𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 165 | | 3pos 11114 |
. . . . . . . . . 10
⊢ 0 <
3 |
| 166 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑖 = 0 → (𝑖 < 3 ↔ 0 < 3)) |
| 167 | 165, 166 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝑖 = 0 → 𝑖 < 3) |
| 168 | 167 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 < 3) |
| 169 | | biimt 350 |
. . . . . . . 8
⊢ (𝑖 < 3 →
(((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 170 | 168, 169 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 171 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) |
| 172 | 171 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = (〈“𝐴𝐵𝐶𝐷”〉‘0)) |
| 173 | | s4fv0 13640 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑃 → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) |
| 174 | 9, 173 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) |
| 175 | 174 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶𝐷”〉‘0) = 𝐴) |
| 176 | 172, 175 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = 𝐴) |
| 177 | | s4fv3 13643 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑃 → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) |
| 178 | 12, 177 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) |
| 179 | 178 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) |
| 180 | 176, 179 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) = (𝐴 − 𝐷)) |
| 181 | 171 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = (〈“𝑊𝑋𝑌𝑍”〉‘0)) |
| 182 | | s4fv0 13640 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ 𝑃 → (〈“𝑊𝑋𝑌𝑍”〉‘0) = 𝑊) |
| 183 | 20, 182 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝑊𝑋𝑌𝑍”〉‘0) = 𝑊) |
| 184 | 183 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝑊𝑋𝑌𝑍”〉‘0) = 𝑊) |
| 185 | 181, 184 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = 𝑊) |
| 186 | | s4fv3 13643 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ 𝑃 → (〈“𝑊𝑋𝑌𝑍”〉‘3) = 𝑍) |
| 187 | 23, 186 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (〈“𝑊𝑋𝑌𝑍”〉‘3) = 𝑍) |
| 188 | 187 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (〈“𝑊𝑋𝑌𝑍”〉‘3) = 𝑍) |
| 189 | 185, 188 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) = (𝑊 − 𝑍)) |
| 190 | 180, 189 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝐴 − 𝐷) = (𝑊 − 𝑍))) |
| 191 | 170, 190 | bitr3d 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ (𝐴 − 𝐷) = (𝑊 − 𝑍))) |
| 192 | | 1lt3 11196 |
. . . . . . . . . 10
⊢ 1 <
3 |
| 193 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → (𝑖 < 3 ↔ 1 < 3)) |
| 194 | 192, 193 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝑖 = 1 → 𝑖 < 3) |
| 195 | 194 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝑖 < 3) |
| 196 | 195, 169 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 197 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 1) → 𝑖 = 1) |
| 198 | 197 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = (〈“𝐴𝐵𝐶𝐷”〉‘1)) |
| 199 | | s4fv1 13641 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑃 → (〈“𝐴𝐵𝐶𝐷”〉‘1) = 𝐵) |
| 200 | 10, 199 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉‘1) = 𝐵) |
| 201 | 200 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶𝐷”〉‘1) = 𝐵) |
| 202 | 198, 201 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = 𝐵) |
| 203 | 178 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) |
| 204 | 202, 203 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) = (𝐵 − 𝐷)) |
| 205 | 197 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = (〈“𝑊𝑋𝑌𝑍”〉‘1)) |
| 206 | | s4fv1 13641 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝑃 → (〈“𝑊𝑋𝑌𝑍”〉‘1) = 𝑋) |
| 207 | 21, 206 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝑊𝑋𝑌𝑍”〉‘1) = 𝑋) |
| 208 | 207 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝑊𝑋𝑌𝑍”〉‘1) = 𝑋) |
| 209 | 205, 208 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = 𝑋) |
| 210 | 187 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 1) → (〈“𝑊𝑋𝑌𝑍”〉‘3) = 𝑍) |
| 211 | 209, 210 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 1) → ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) = (𝑋 − 𝑍)) |
| 212 | 204, 211 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 1) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝐵 − 𝐷) = (𝑋 − 𝑍))) |
| 213 | 196, 212 | bitr3d 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 1) → ((𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ (𝐵 − 𝐷) = (𝑋 − 𝑍))) |
| 214 | | 2lt3 11195 |
. . . . . . . . . 10
⊢ 2 <
3 |
| 215 | | breq1 4656 |
. . . . . . . . . 10
⊢ (𝑖 = 2 → (𝑖 < 3 ↔ 2 < 3)) |
| 216 | 214, 215 | mpbiri 248 |
. . . . . . . . 9
⊢ (𝑖 = 2 → 𝑖 < 3) |
| 217 | 216 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝑖 < 3) |
| 218 | 217, 169 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))))) |
| 219 | | simpr 477 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 2) → 𝑖 = 2) |
| 220 | 219 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = (〈“𝐴𝐵𝐶𝐷”〉‘2)) |
| 221 | | s4fv2 13642 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ 𝑃 → (〈“𝐴𝐵𝐶𝐷”〉‘2) = 𝐶) |
| 222 | 11, 221 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉‘2) = 𝐶) |
| 223 | 222 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶𝐷”〉‘2) = 𝐶) |
| 224 | 220, 223 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶𝐷”〉‘𝑖) = 𝐶) |
| 225 | 178 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝐴𝐵𝐶𝐷”〉‘3) = 𝐷) |
| 226 | 224, 225 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) = (𝐶 − 𝐷)) |
| 227 | 219 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = (〈“𝑊𝑋𝑌𝑍”〉‘2)) |
| 228 | | s4fv2 13642 |
. . . . . . . . . . . 12
⊢ (𝑌 ∈ 𝑃 → (〈“𝑊𝑋𝑌𝑍”〉‘2) = 𝑌) |
| 229 | 22, 228 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈“𝑊𝑋𝑌𝑍”〉‘2) = 𝑌) |
| 230 | 229 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝑊𝑋𝑌𝑍”〉‘2) = 𝑌) |
| 231 | 227, 230 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝑊𝑋𝑌𝑍”〉‘𝑖) = 𝑌) |
| 232 | 187 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 2) → (〈“𝑊𝑋𝑌𝑍”〉‘3) = 𝑍) |
| 233 | 231, 232 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 2) → ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) = (𝑌 − 𝑍)) |
| 234 | 226, 233 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 2) → (((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)) ↔ (𝐶 − 𝐷) = (𝑌 − 𝑍))) |
| 235 | 218, 234 | bitr3d 270 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = 2) → ((𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ (𝐶 − 𝐷) = (𝑌 − 𝑍))) |
| 236 | | 0red 10041 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
| 237 | | 1red 10055 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) |
| 238 | | 2re 11090 |
. . . . . . 7
⊢ 2 ∈
ℝ |
| 239 | 238 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℝ) |
| 240 | 191, 213,
235, 236, 237, 239 | raltpd 4315 |
. . . . 5
⊢ (𝜑 → (∀𝑖 ∈ {0, 1, 2} (𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍)))) |
| 241 | 164, 240 | bitrd 268 |
. . . 4
⊢ (𝜑 → (∀𝑖 ∈ (0..^3)(𝑖 < 3 →
((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3))) ↔ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍)))) |
| 242 | 161, 241 | anbi12d 747 |
. . 3
⊢ (𝜑 → ((∀𝑖 ∈ (0..^3)∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ ∀𝑖 ∈ (0..^3)(𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
(〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉 ∧ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍))))) |
| 243 | 98, 242 | syl5bb 272 |
. 2
⊢ (𝜑 → (∀𝑖 ∈ (0..^3)(∀𝑗 ∈ (0..^3)(𝑖 < 𝑗 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘𝑗)) = ((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘𝑗))) ∧ (𝑖 < 3 → ((〈“𝐴𝐵𝐶𝐷”〉‘𝑖) − (〈“𝐴𝐵𝐶𝐷”〉‘3)) =
((〈“𝑊𝑋𝑌𝑍”〉‘𝑖) − (〈“𝑊𝑋𝑌𝑍”〉‘3)))) ↔
(〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉 ∧ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍))))) |
| 244 | 31, 97, 243 | 3bitrd 294 |
1
⊢ (𝜑 → (〈“𝐴𝐵𝐶𝐷”〉 ∼ 〈“𝑊𝑋𝑌𝑍”〉 ↔ (〈“𝐴𝐵𝐶”〉 ∼ 〈“𝑊𝑋𝑌”〉 ∧ ((𝐴 − 𝐷) = (𝑊 − 𝑍) ∧ (𝐵 − 𝐷) = (𝑋 − 𝑍) ∧ (𝐶 − 𝐷) = (𝑌 − 𝑍))))) |