Detailed syntax breakdown of Definition df-symg
| Step | Hyp | Ref
| Expression |
| 1 | | csymg 17797 |
. 2
class
SymGrp |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | | vb |
. . . 4
setvar 𝑏 |
| 5 | 2 | cv 1482 |
. . . . . 6
class 𝑥 |
| 6 | | vh |
. . . . . . 7
setvar ℎ |
| 7 | 6 | cv 1482 |
. . . . . 6
class ℎ |
| 8 | 5, 5, 7 | wf1o 5887 |
. . . . 5
wff ℎ:𝑥–1-1-onto→𝑥 |
| 9 | 8, 6 | cab 2608 |
. . . 4
class {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} |
| 10 | | cnx 15854 |
. . . . . . 7
class
ndx |
| 11 | | cbs 15857 |
. . . . . . 7
class
Base |
| 12 | 10, 11 | cfv 5888 |
. . . . . 6
class
(Base‘ndx) |
| 13 | 4 | cv 1482 |
. . . . . 6
class 𝑏 |
| 14 | 12, 13 | cop 4183 |
. . . . 5
class
〈(Base‘ndx), 𝑏〉 |
| 15 | | cplusg 15941 |
. . . . . . 7
class
+g |
| 16 | 10, 15 | cfv 5888 |
. . . . . 6
class
(+g‘ndx) |
| 17 | | vf |
. . . . . . 7
setvar 𝑓 |
| 18 | | vg |
. . . . . . 7
setvar 𝑔 |
| 19 | 17 | cv 1482 |
. . . . . . . 8
class 𝑓 |
| 20 | 18 | cv 1482 |
. . . . . . . 8
class 𝑔 |
| 21 | 19, 20 | ccom 5118 |
. . . . . . 7
class (𝑓 ∘ 𝑔) |
| 22 | 17, 18, 13, 13, 21 | cmpt2 6652 |
. . . . . 6
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) |
| 23 | 16, 22 | cop 4183 |
. . . . 5
class
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 |
| 24 | | cts 15947 |
. . . . . . 7
class
TopSet |
| 25 | 10, 24 | cfv 5888 |
. . . . . 6
class
(TopSet‘ndx) |
| 26 | 5 | cpw 4158 |
. . . . . . . . 9
class 𝒫
𝑥 |
| 27 | 26 | csn 4177 |
. . . . . . . 8
class
{𝒫 𝑥} |
| 28 | 5, 27 | cxp 5112 |
. . . . . . 7
class (𝑥 × {𝒫 𝑥}) |
| 29 | | cpt 16099 |
. . . . . . 7
class
∏t |
| 30 | 28, 29 | cfv 5888 |
. . . . . 6
class
(∏t‘(𝑥 × {𝒫 𝑥})) |
| 31 | 25, 30 | cop 4183 |
. . . . 5
class
〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉 |
| 32 | 14, 23, 31 | ctp 4181 |
. . . 4
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
| 33 | 4, 9, 32 | csb 3533 |
. . 3
class
⦋{ℎ
∣ ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
| 34 | 2, 3, 33 | cmpt 4729 |
. 2
class (𝑥 ∈ V ↦
⦋{ℎ ∣
ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
| 35 | 1, 34 | wceq 1483 |
1
wff SymGrp =
(𝑥 ∈ V ↦
⦋{ℎ ∣
ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |