| Step | Hyp | Ref
| Expression |
| 1 | | symgval.1 |
. 2
⊢ 𝐺 = (SymGrp‘𝐴) |
| 2 | | elex 3212 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
| 3 | | ovex 6678 |
. . . . . . 7
⊢ (𝑎 ↑𝑚
𝑎) ∈
V |
| 4 | | f1of 6137 |
. . . . . . . . 9
⊢ (𝑥:𝑎–1-1-onto→𝑎 → 𝑥:𝑎⟶𝑎) |
| 5 | | vex 3203 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
| 6 | 5, 5 | elmap 7886 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑎 ↑𝑚 𝑎) ↔ 𝑥:𝑎⟶𝑎) |
| 7 | 4, 6 | sylibr 224 |
. . . . . . . 8
⊢ (𝑥:𝑎–1-1-onto→𝑎 → 𝑥 ∈ (𝑎 ↑𝑚 𝑎)) |
| 8 | 7 | abssi 3677 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ⊆ (𝑎 ↑𝑚 𝑎) |
| 9 | 3, 8 | ssexi 4803 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ∈ V |
| 10 | 9 | a1i 11 |
. . . . 5
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ∈ V) |
| 11 | | id 22 |
. . . . . . . 8
⊢ (𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} → 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) |
| 12 | | f1oeq23 6130 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝐴 ∧ 𝑎 = 𝐴) → (𝑥:𝑎–1-1-onto→𝑎 ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
| 13 | 12 | anidms 677 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑥:𝑎–1-1-onto→𝑎 ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
| 14 | 13 | abbidv 2741 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
| 15 | | symgval.2 |
. . . . . . . . 9
⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| 16 | 14, 15 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} = 𝐵) |
| 17 | 11, 16 | sylan9eqr 2678 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝑏 = 𝐵) |
| 18 | 17 | opeq2d 4409 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx), 𝐵〉) |
| 19 | | eqidd 2623 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)) |
| 20 | 17, 17, 19 | mpt2eq123dv 6717 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
| 21 | | symgval.3 |
. . . . . . . 8
⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = + ) |
| 23 | 22 | opeq2d 4409 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 = 〈(+g‘ndx),
+
〉) |
| 24 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝑎 = 𝐴) |
| 25 | 24 | pweqd 4163 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝒫 𝑎 = 𝒫 𝐴) |
| 26 | 25 | sneqd 4189 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → {𝒫 𝑎} = {𝒫 𝐴}) |
| 27 | 24, 26 | xpeq12d 5140 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴})) |
| 28 | 27 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
(∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴}))) |
| 29 | | symgval.4 |
. . . . . . . 8
⊢ 𝐽 =
(∏t‘(𝐴 × {𝒫 𝐴})) |
| 30 | 28, 29 | syl6eqr 2674 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
(∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽) |
| 31 | 30 | opeq2d 4409 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
| 32 | 18, 23, 31 | tpeq123d 4283 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 33 | 10, 32 | csbied 3560 |
. . . 4
⊢ (𝑎 = 𝐴 → ⦋{𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 34 | | df-symg 17798 |
. . . 4
⊢ SymGrp =
(𝑎 ∈ V ↦
⦋{𝑥 ∣
𝑥:𝑎–1-1-onto→𝑎} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉}) |
| 35 | | tpex 6957 |
. . . 4
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V |
| 36 | 33, 34, 35 | fvmpt 6282 |
. . 3
⊢ (𝐴 ∈ V →
(SymGrp‘𝐴) =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 37 | 2, 36 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (SymGrp‘𝐴) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 38 | 1, 37 | syl5eq 2668 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |