Detailed syntax breakdown of Definition df-unit
| Step | Hyp | Ref
| Expression |
| 1 | | cui 18639 |
. 2
class
Unit |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | 2 | cv 1482 |
. . . . . . 7
class 𝑤 |
| 5 | | cdsr 18638 |
. . . . . . 7
class
∥r |
| 6 | 4, 5 | cfv 5888 |
. . . . . 6
class
(∥r‘𝑤) |
| 7 | | coppr 18622 |
. . . . . . . 8
class
oppr |
| 8 | 4, 7 | cfv 5888 |
. . . . . . 7
class
(oppr‘𝑤) |
| 9 | 8, 5 | cfv 5888 |
. . . . . 6
class
(∥r‘(oppr‘𝑤)) |
| 10 | 6, 9 | cin 3573 |
. . . . 5
class
((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) |
| 11 | 10 | ccnv 5113 |
. . . 4
class ◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) |
| 12 | | cur 18501 |
. . . . . 6
class
1r |
| 13 | 4, 12 | cfv 5888 |
. . . . 5
class
(1r‘𝑤) |
| 14 | 13 | csn 4177 |
. . . 4
class
{(1r‘𝑤)} |
| 15 | 11, 14 | cima 5117 |
. . 3
class (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “
{(1r‘𝑤)}) |
| 16 | 2, 3, 15 | cmpt 4729 |
. 2
class (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “
{(1r‘𝑤)})) |
| 17 | 1, 16 | wceq 1483 |
1
wff Unit =
(𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “
{(1r‘𝑤)})) |