MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isunit Structured version   Visualization version   GIF version

Theorem isunit 18657
Description: Property of being a unit of a ring. A unit is an element that left- and right-divides one. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 8-Dec-2015.)
Hypotheses
Ref Expression
unit.1 𝑈 = (Unit‘𝑅)
unit.2 1 = (1r𝑅)
unit.3 = (∥r𝑅)
unit.4 𝑆 = (oppr𝑅)
unit.5 𝐸 = (∥r𝑆)
Assertion
Ref Expression
isunit (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))

Proof of Theorem isunit
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . . . 4 (𝑋 ∈ (Unit‘𝑅) → 𝑅 ∈ dom Unit)
2 unit.1 . . . 4 𝑈 = (Unit‘𝑅)
31, 2eleq2s 2719 . . 3 (𝑋𝑈𝑅 ∈ dom Unit)
43elexd 3214 . 2 (𝑋𝑈𝑅 ∈ V)
5 df-br 4654 . . . 4 (𝑋 1 ↔ ⟨𝑋, 1 ⟩ ∈ )
6 elfvdm 6220 . . . . . 6 (⟨𝑋, 1 ⟩ ∈ (∥r𝑅) → 𝑅 ∈ dom ∥r)
7 unit.3 . . . . . 6 = (∥r𝑅)
86, 7eleq2s 2719 . . . . 5 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ dom ∥r)
98elexd 3214 . . . 4 (⟨𝑋, 1 ⟩ ∈ 𝑅 ∈ V)
105, 9sylbi 207 . . 3 (𝑋 1𝑅 ∈ V)
1110adantr 481 . 2 ((𝑋 1𝑋𝐸 1 ) → 𝑅 ∈ V)
12 fveq2 6191 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r𝑟) = (∥r𝑅))
1312, 7syl6eqr 2674 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r𝑟) = )
14 fveq2 6191 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (oppr𝑟) = (oppr𝑅))
15 unit.4 . . . . . . . . . . . 12 𝑆 = (oppr𝑅)
1614, 15syl6eqr 2674 . . . . . . . . . . 11 (𝑟 = 𝑅 → (oppr𝑟) = 𝑆)
1716fveq2d 6195 . . . . . . . . . 10 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = (∥r𝑆))
18 unit.5 . . . . . . . . . 10 𝐸 = (∥r𝑆)
1917, 18syl6eqr 2674 . . . . . . . . 9 (𝑟 = 𝑅 → (∥r‘(oppr𝑟)) = 𝐸)
2013, 19ineq12d 3815 . . . . . . . 8 (𝑟 = 𝑅 → ((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
2120cnveqd 5298 . . . . . . 7 (𝑟 = 𝑅((∥r𝑟) ∩ (∥r‘(oppr𝑟))) = ( 𝐸))
22 fveq2 6191 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
23 unit.2 . . . . . . . . 9 1 = (1r𝑅)
2422, 23syl6eqr 2674 . . . . . . . 8 (𝑟 = 𝑅 → (1r𝑟) = 1 )
2524sneqd 4189 . . . . . . 7 (𝑟 = 𝑅 → {(1r𝑟)} = { 1 })
2621, 25imaeq12d 5467 . . . . . 6 (𝑟 = 𝑅 → (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}) = (( 𝐸) “ { 1 }))
27 df-unit 18642 . . . . . 6 Unit = (𝑟 ∈ V ↦ (((∥r𝑟) ∩ (∥r‘(oppr𝑟))) “ {(1r𝑟)}))
28 fvex 6201 . . . . . . . . . 10 (∥r𝑅) ∈ V
297, 28eqeltri 2697 . . . . . . . . 9 ∈ V
3029inex1 4799 . . . . . . . 8 ( 𝐸) ∈ V
3130cnvex 7113 . . . . . . 7 ( 𝐸) ∈ V
3231imaex 7104 . . . . . 6 (( 𝐸) “ { 1 }) ∈ V
3326, 27, 32fvmpt 6282 . . . . 5 (𝑅 ∈ V → (Unit‘𝑅) = (( 𝐸) “ { 1 }))
342, 33syl5eq 2668 . . . 4 (𝑅 ∈ V → 𝑈 = (( 𝐸) “ { 1 }))
3534eleq2d 2687 . . 3 (𝑅 ∈ V → (𝑋𝑈𝑋 ∈ (( 𝐸) “ { 1 })))
36 inss1 3833 . . . . . 6 ( 𝐸) ⊆
377reldvdsr 18644 . . . . . 6 Rel
38 relss 5206 . . . . . 6 (( 𝐸) ⊆ → (Rel → Rel ( 𝐸)))
3936, 37, 38mp2 9 . . . . 5 Rel ( 𝐸)
40 eliniseg2 5505 . . . . 5 (Rel ( 𝐸) → (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 ))
4139, 40ax-mp 5 . . . 4 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ 𝑋( 𝐸) 1 )
42 brin 4704 . . . 4 (𝑋( 𝐸) 1 ↔ (𝑋 1𝑋𝐸 1 ))
4341, 42bitri 264 . . 3 (𝑋 ∈ (( 𝐸) “ { 1 }) ↔ (𝑋 1𝑋𝐸 1 ))
4435, 43syl6bb 276 . 2 (𝑅 ∈ V → (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 )))
454, 11, 44pm5.21nii 368 1 (𝑋𝑈 ↔ (𝑋 1𝑋𝐸 1 ))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  {csn 4177  cop 4183   class class class wbr 4653  ccnv 5113  dom cdm 5114  cima 5117  Rel wrel 5119  cfv 5888  1rcur 18501  opprcoppr 18622  rcdsr 18638  Unitcui 18639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-dvdsr 18641  df-unit 18642
This theorem is referenced by:  1unit  18658  unitcl  18659  opprunit  18661  crngunit  18662  unitmulcl  18664  unitgrp  18667  unitnegcl  18681  unitpropd  18697  isdrng2  18757  subrguss  18795  subrgunit  18798  fidomndrng  19307  invrvald  20482  elrhmunit  29820
  Copyright terms: Public domain W3C validator