Detailed syntax breakdown of Definition df-uvtxa
| Step | Hyp | Ref
| Expression |
| 1 | | cuvtxa 26225 |
. 2
class
UnivVtx |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3200 |
. . 3
class
V |
| 4 | | vn |
. . . . . . 7
setvar 𝑛 |
| 5 | 4 | cv 1482 |
. . . . . 6
class 𝑛 |
| 6 | 2 | cv 1482 |
. . . . . . 7
class 𝑔 |
| 7 | | vv |
. . . . . . . 8
setvar 𝑣 |
| 8 | 7 | cv 1482 |
. . . . . . 7
class 𝑣 |
| 9 | | cnbgr 26224 |
. . . . . . 7
class
NeighbVtx |
| 10 | 6, 8, 9 | co 6650 |
. . . . . 6
class (𝑔 NeighbVtx 𝑣) |
| 11 | 5, 10 | wcel 1990 |
. . . . 5
wff 𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 12 | | cvtx 25874 |
. . . . . . 7
class
Vtx |
| 13 | 6, 12 | cfv 5888 |
. . . . . 6
class
(Vtx‘𝑔) |
| 14 | 8 | csn 4177 |
. . . . . 6
class {𝑣} |
| 15 | 13, 14 | cdif 3571 |
. . . . 5
class
((Vtx‘𝑔)
∖ {𝑣}) |
| 16 | 11, 4, 15 | wral 2912 |
. . . 4
wff
∀𝑛 ∈
((Vtx‘𝑔) ∖
{𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣) |
| 17 | 16, 7, 13 | crab 2916 |
. . 3
class {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)} |
| 18 | 2, 3, 17 | cmpt 4729 |
. 2
class (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
| 19 | 1, 18 | wceq 1483 |
1
wff UnivVtx =
(𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |