| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cplgr | Structured version Visualization version GIF version | ||
| Description: Define the class of all complete "graphs". A class/graph is called complete if every pair of distinct vertices is connected by an edge, i.e. each vertex has all other vertices as neighbors. (Contributed by AV, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| df-cplgr | ⊢ ComplGraph = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccplgr 26226 | . 2 class ComplGraph | |
| 2 | vv | . . . . . 6 setvar 𝑣 | |
| 3 | 2 | cv 1482 | . . . . 5 class 𝑣 |
| 4 | vg | . . . . . . 7 setvar 𝑔 | |
| 5 | 4 | cv 1482 | . . . . . 6 class 𝑔 |
| 6 | cuvtxa 26225 | . . . . . 6 class UnivVtx | |
| 7 | 5, 6 | cfv 5888 | . . . . 5 class (UnivVtx‘𝑔) |
| 8 | 3, 7 | wcel 1990 | . . . 4 wff 𝑣 ∈ (UnivVtx‘𝑔) |
| 9 | cvtx 25874 | . . . . 5 class Vtx | |
| 10 | 5, 9 | cfv 5888 | . . . 4 class (Vtx‘𝑔) |
| 11 | 8, 2, 10 | wral 2912 | . . 3 wff ∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔) |
| 12 | 11, 4 | cab 2608 | . 2 class {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔)} |
| 13 | 1, 12 | wceq 1483 | 1 wff ComplGraph = {𝑔 ∣ ∀𝑣 ∈ (Vtx‘𝑔)𝑣 ∈ (UnivVtx‘𝑔)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: iscplgr 26310 |
| Copyright terms: Public domain | W3C validator |