| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-vr1 | Structured version Visualization version GIF version | ||
| Description: Define the base element of a univariate power series (the 𝑋 element of the set 𝑅[𝑋] of polynomials and also the 𝑋 in the set 𝑅[[𝑋]] of power series). (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| df-vr1 | ⊢ var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cv1 19546 | . 2 class var1 | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cvv 3200 | . . 3 class V | |
| 4 | c0 3915 | . . . 4 class ∅ | |
| 5 | c1o 7553 | . . . . 5 class 1𝑜 | |
| 6 | 2 | cv 1482 | . . . . 5 class 𝑟 |
| 7 | cmvr 19352 | . . . . 5 class mVar | |
| 8 | 5, 6, 7 | co 6650 | . . . 4 class (1𝑜 mVar 𝑟) |
| 9 | 4, 8 | cfv 5888 | . . 3 class ((1𝑜 mVar 𝑟)‘∅) |
| 10 | 2, 3, 9 | cmpt 4729 | . 2 class (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) |
| 11 | 1, 10 | wceq 1483 | 1 wff var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: vr1val 19562 |
| Copyright terms: Public domain | W3C validator |