![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vr1val | Structured version Visualization version GIF version |
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1𝑜 = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
vr1val.1 | ⊢ 𝑋 = (var1‘𝑅) |
Ref | Expression |
---|---|
vr1val | ⊢ 𝑋 = ((1𝑜 mVar 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vr1val.1 | . . 3 ⊢ 𝑋 = (var1‘𝑅) | |
2 | oveq2 6658 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1𝑜 mVar 𝑟) = (1𝑜 mVar 𝑅)) | |
3 | 2 | fveq1d 6193 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1𝑜 mVar 𝑟)‘∅) = ((1𝑜 mVar 𝑅)‘∅)) |
4 | df-vr1 19551 | . . . 4 ⊢ var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅)) | |
5 | fvex 6201 | . . . 4 ⊢ ((1𝑜 mVar 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6282 | . . 3 ⊢ (𝑅 ∈ V → (var1‘𝑅) = ((1𝑜 mVar 𝑅)‘∅)) |
7 | 1, 6 | syl5eq 2668 | . 2 ⊢ (𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅)) |
8 | fvprc 6185 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (var1‘𝑅) = ∅) | |
9 | 0fv 6227 | . . . 4 ⊢ (∅‘∅) = ∅ | |
10 | 8, 1, 9 | 3eqtr4g 2681 | . . 3 ⊢ (¬ 𝑅 ∈ V → 𝑋 = (∅‘∅)) |
11 | df-mvr 19357 | . . . . . 6 ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) | |
12 | 11 | reldmmpt2 6771 | . . . . 5 ⊢ Rel dom mVar |
13 | 12 | ovprc2 6685 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1𝑜 mVar 𝑅) = ∅) |
14 | 13 | fveq1d 6193 | . . 3 ⊢ (¬ 𝑅 ∈ V → ((1𝑜 mVar 𝑅)‘∅) = (∅‘∅)) |
15 | 10, 14 | eqtr4d 2659 | . 2 ⊢ (¬ 𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅)) |
16 | 7, 15 | pm2.61i 176 | 1 ⊢ 𝑋 = ((1𝑜 mVar 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ∅c0 3915 ifcif 4086 ↦ cmpt 4729 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 (class class class)co 6650 1𝑜c1o 7553 ↑𝑚 cmap 7857 Fincfn 7955 0cc0 9936 1c1 9937 ℕcn 11020 ℕ0cn0 11292 0gc0g 16100 1rcur 18501 mVar cmvr 19352 var1cv1 19546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-mvr 19357 df-vr1 19551 |
This theorem is referenced by: vr1cl2 19563 vr1cl 19587 subrgvr1 19631 subrgvr1cl 19632 coe1tm 19643 ply1coe 19666 evl1var 19700 evls1var 19702 |
Copyright terms: Public domain | W3C validator |