MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vr1val Structured version   Visualization version   GIF version

Theorem vr1val 19562
Description: The value of the generator of the power series algebra (the 𝑋 in 𝑅[[𝑋]]). Since all univariate polynomial rings over a fixed base ring 𝑅 are isomorphic, we don't bother to pass this in as a parameter; internally we are actually using the empty set as this generator and 1𝑜 = {∅} is the index set (but for most purposes this choice should not be visible anyway). (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
vr1val.1 𝑋 = (var1𝑅)
Assertion
Ref Expression
vr1val 𝑋 = ((1𝑜 mVar 𝑅)‘∅)

Proof of Theorem vr1val
Dummy variables 𝑓 𝑖 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vr1val.1 . . 3 𝑋 = (var1𝑅)
2 oveq2 6658 . . . . 5 (𝑟 = 𝑅 → (1𝑜 mVar 𝑟) = (1𝑜 mVar 𝑅))
32fveq1d 6193 . . . 4 (𝑟 = 𝑅 → ((1𝑜 mVar 𝑟)‘∅) = ((1𝑜 mVar 𝑅)‘∅))
4 df-vr1 19551 . . . 4 var1 = (𝑟 ∈ V ↦ ((1𝑜 mVar 𝑟)‘∅))
5 fvex 6201 . . . 4 ((1𝑜 mVar 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 6282 . . 3 (𝑅 ∈ V → (var1𝑅) = ((1𝑜 mVar 𝑅)‘∅))
71, 6syl5eq 2668 . 2 (𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅))
8 fvprc 6185 . . . 4 𝑅 ∈ V → (var1𝑅) = ∅)
9 0fv 6227 . . . 4 (∅‘∅) = ∅
108, 1, 93eqtr4g 2681 . . 3 𝑅 ∈ V → 𝑋 = (∅‘∅))
11 df-mvr 19357 . . . . . 6 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
1211reldmmpt2 6771 . . . . 5 Rel dom mVar
1312ovprc2 6685 . . . 4 𝑅 ∈ V → (1𝑜 mVar 𝑅) = ∅)
1413fveq1d 6193 . . 3 𝑅 ∈ V → ((1𝑜 mVar 𝑅)‘∅) = (∅‘∅))
1510, 14eqtr4d 2659 . 2 𝑅 ∈ V → 𝑋 = ((1𝑜 mVar 𝑅)‘∅))
167, 15pm2.61i 176 1 𝑋 = ((1𝑜 mVar 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  c0 3915  ifcif 4086  cmpt 4729  ccnv 5113  cima 5117  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  cn 11020  0cn0 11292  0gc0g 16100  1rcur 18501   mVar cmvr 19352  var1cv1 19546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-mvr 19357  df-vr1 19551
This theorem is referenced by:  vr1cl2  19563  vr1cl  19587  subrgvr1  19631  subrgvr1cl  19632  coe1tm  19643  ply1coe  19666  evl1var  19700  evls1var  19702
  Copyright terms: Public domain W3C validator