| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-wl-clelv2 | Structured version Visualization version GIF version | ||
| Description: Define the term 𝑥 ∈ 𝐴, 𝑥 in 𝐴 permitted. (Contributed by Wolf Lammen, 27-Nov-2021.) |
| Ref | Expression |
|---|---|
| df-wl-clelv2 | ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | 1, 2 | wcel2-wl 33375 | . 2 wff 𝑥 ∈ 𝐴 |
| 4 | vu | . . . . 5 setvar 𝑢 | |
| 5 | 4, 1 | weq 1874 | . . . 4 wff 𝑢 = 𝑥 |
| 6 | 4, 2 | wcel-wl 33373 | . . . 4 wff 𝑢 ∈ 𝐴 |
| 7 | 5, 6 | wi 4 | . . 3 wff (𝑢 = 𝑥 → 𝑢 ∈ 𝐴) |
| 8 | 7, 4 | wal 1481 | . 2 wff ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴) |
| 9 | 3, 8 | wb 196 | 1 wff (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: wl-ax8clv2 33381 |
| Copyright terms: Public domain | W3C validator |