| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-clelv2-just | Structured version Visualization version GIF version | ||
| Description: Show that the definition df-wl-clelv2 33380 is conservative. (Contributed by Wolf Lammen, 27-Nov-2021.) |
| Ref | Expression |
|---|---|
| wl-clelv2-just | ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-wl-8cl 33377 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | ax-wl-8cl 33377 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) | |
| 3 | 2 | equcoms 1947 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) |
| 4 | 1, 3 | impbid 202 | . . 3 ⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
| 5 | 4 | equsalvw 1931 | . 2 ⊢ (∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) |
| 6 | 5 | bicomi 214 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∈ wcel-wl 33373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-wl-8cl 33377 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |