| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xr | Structured version Visualization version GIF version | ||
| Description: Define the set of extended reals that includes plus and minus infinity. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| df-xr | ⊢ ℝ* = (ℝ ∪ {+∞, -∞}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxr 10073 | . 2 class ℝ* | |
| 2 | cr 9935 | . . 3 class ℝ | |
| 3 | cpnf 10071 | . . . 4 class +∞ | |
| 4 | cmnf 10072 | . . . 4 class -∞ | |
| 5 | 3, 4 | cpr 4179 | . . 3 class {+∞, -∞} |
| 6 | 2, 5 | cun 3572 | . 2 class (ℝ ∪ {+∞, -∞}) |
| 7 | 1, 6 | wceq 1483 | 1 wff ℝ* = (ℝ ∪ {+∞, -∞}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ressxr 10083 pnfxr 10092 mnfxr 10096 ltrelxr 10099 ssxr 10107 xrex 11829 elxr 11950 climxlim2lem 40071 |
| Copyright terms: Public domain | W3C validator |