Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxlim2lem Structured version   Visualization version   GIF version

Theorem climxlim2lem 40071
Description: In this lemma for climxlim2 40072 there is the additional assumption that the converging function is complex valued on the whole domain. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxlim2lem.1 (𝜑𝑀 ∈ ℤ)
climxlim2lem.2 𝑍 = (ℤ𝑀)
climxlim2lem.3 (𝜑𝐹:𝑍⟶ℝ*)
climxlim2lem.4 (𝜑𝐹:𝑍⟶ℂ)
climxlim2lem.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climxlim2lem (𝜑𝐹~~>*𝐴)

Proof of Theorem climxlim2lem
Dummy variables 𝑥 𝑘 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxlim2lem.5 . . . 4 (𝜑𝐹𝐴)
21adantr 481 . . 3 ((𝜑𝐴 ∈ ℝ) → 𝐹𝐴)
3 climxlim2lem.1 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 481 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
5 climxlim2lem.2 . . . 4 𝑍 = (ℤ𝑀)
6 climxlim2lem.3 . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
76adantr 481 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
8 simpr 477 . . . 4 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
94, 5, 7, 8xlimclim2 40066 . . 3 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
102, 9mpbird 247 . 2 ((𝜑𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
11 climxlim2lem.4 . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℂ)
1211ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
1312anim1i 592 . . . . . . . . . 10 (((𝜑𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
1413adantllr 755 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴))
156adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → 𝐹:𝑍⟶ℝ*)
1615ffvelrnda 6359 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
17 simplr 792 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
18 eleq1 2689 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦 ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
19 neeq1 2856 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (𝑦𝐴 ↔ (𝐹𝑘) ≠ 𝐴))
2018, 19anbi12d 747 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) ↔ ((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴)))
21 oveq1 6657 . . . . . . . . . . . . . . 15 (𝑦 = (𝐹𝑘) → (𝑦𝐴) = ((𝐹𝑘) − 𝐴))
2221fveq2d 6195 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑘) → (abs‘(𝑦𝐴)) = (abs‘((𝐹𝑘) − 𝐴)))
2322breq2d 4665 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑘) → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2420, 23imbi12d 334 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑘) → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))))
2524rspcva 3307 . . . . . . . . . . 11 (((𝐹𝑘) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2616, 17, 25syl2anc 693 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2726adantr 481 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
2814, 27mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ≠ 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
2928ex 450 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3029ralrimiva 2966 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
3130ad4ant14 1293 . . . . 5 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴)))) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
32 climcl 14230 . . . . . . . 8 (𝐹𝐴𝐴 ∈ ℂ)
331, 32syl 17 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3433adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐴 ∈ ℂ)
35 simpr 477 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ¬ 𝐴 ∈ ℝ)
36 prfi 8235 . . . . . . 7 {+∞, -∞} ∈ Fin
3736a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → {+∞, -∞} ∈ Fin)
38 df-xr 10078 . . . . . 6 * = (ℝ ∪ {+∞, -∞})
3934, 35, 37, 38cnrefiisp 40056 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑦 ∈ ℝ* ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
4031, 39reximddv3 39343 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑥 ∈ ℝ+𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
41 nfv 1843 . . . . . . . . . 10 𝑘(𝜑𝑥 ∈ ℝ+)
42 nfra1 2941 . . . . . . . . . 10 𝑘𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
4341, 42nfan 1828 . . . . . . . . 9 𝑘((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
44 nfv 1843 . . . . . . . . 9 𝑘 𝑗𝑍
4543, 44nfan 1828 . . . . . . . 8 𝑘(((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍)
46 nfra1 2941 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥
4745, 46nfan 1828 . . . . . . 7 𝑘((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
48 simpll 790 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
495uztrn2 11705 . . . . . . . . . . . . 13 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5049adantll 750 . . . . . . . . . . . 12 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
51 rspa 2930 . . . . . . . . . . . 12 ((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑘𝑍) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
5248, 50, 51syl2anc 693 . . . . . . . . . . 11 (((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
53 neqne 2802 . . . . . . . . . . 11 (¬ (𝐹𝑘) = 𝐴 → (𝐹𝑘) ≠ 𝐴)
5452, 53impel 485 . . . . . . . . . 10 ((((∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5554ad5ant2345 1317 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
5655adantllr 755 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
57 rspa 2930 . . . . . . . . . . . 12 ((∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5857adantll 750 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
5911ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℂ)
6049adantll 750 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6159, 60ffvelrnd 6360 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6261adantlr 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
6333ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℂ)
6462, 63subcld 10392 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − 𝐴) ∈ ℂ)
6564abscld 14175 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
6665adantl3r 786 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − 𝐴)) ∈ ℝ)
67 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
6867ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ+)
6968rpred 11872 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
7066, 69ltnled 10184 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴))))
7158, 70mpbid 222 . . . . . . . . . 10 (((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7271ad5ant1345 1316 . . . . . . . . 9 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7372adantr 481 . . . . . . . 8 (((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ ¬ (𝐹𝑘) = 𝐴) → ¬ 𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))
7456, 73condan 835 . . . . . . 7 ((((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
7547, 74ralrimia 39315 . . . . . 6 (((((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
76 nfcv 2764 . . . . . . . . . . 11 𝑘𝐹
7776, 3, 5, 11climuz 39976 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
781, 77mpbid 222 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
7978simprd 479 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8079r19.21bi 2932 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8180adantr 481 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 𝑥)
8275, 81reximddv3 39343 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8382adantllr 755 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ ∀𝑘𝑍 ((𝐹𝑘) ≠ 𝐴𝑥 ≤ (abs‘((𝐹𝑘) − 𝐴)))) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
8440, 83rexlimddv2 40049 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
85 nfv 1843 . . . . 5 𝑘((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍)
86 nfra1 2941 . . . . 5 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴
8785, 86nfan 1828 . . . 4 𝑘(((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴)
886ad3antrrr 766 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹:𝑍⟶ℝ*)
89 simplr 792 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝑗𝑍)
905uzid3 39662 . . . . . . . 8 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
91 fveq2 6191 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
9291eqeq1d 2624 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) = 𝐴 ↔ (𝐹𝑗) = 𝐴))
9392rspcva 3307 . . . . . . . 8 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
9490, 93sylan 488 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
95943adant1 1079 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) = 𝐴)
966ffvelrnda 6359 . . . . . . 7 ((𝜑𝑗𝑍) → (𝐹𝑗) ∈ ℝ*)
97963adant3 1081 . . . . . 6 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → (𝐹𝑗) ∈ ℝ*)
9895, 97eqeltrrd 2702 . . . . 5 ((𝜑𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
9998ad4ant134 1296 . . . 4 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐴 ∈ ℝ*)
100 rspa 2930 . . . . 5 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
101100adantll 750 . . . 4 (((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) = 𝐴)
10287, 76, 5, 88, 89, 99, 101xlimconst2 40061 . . 3 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) = 𝐴) → 𝐹~~>*𝐴)
10384, 102rexlimddv2 40049 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
10410, 103pm2.61dan 832 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {cpr 4179   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215  ~~>*clsxlim 40044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-lm 21033  df-xms 22125  df-ms 22126  df-xlim 40045
This theorem is referenced by:  climxlim2  40072
  Copyright terms: Public domain W3C validator