MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zeta Structured version   Visualization version   GIF version

Definition df-zeta 24740
Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1, but going from the alternating zeta function to the regular zeta function requires dividing by 1 − 2↑(1 − 𝑠), which has zeroes other than 1. To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014.)
Assertion
Ref Expression
df-zeta ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Distinct variable group:   𝑓,𝑘,𝑛,𝑠

Detailed syntax breakdown of Definition df-zeta
StepHypRef Expression
1 czeta 24739 . 2 class ζ
2 c1 9937 . . . . . . 7 class 1
3 c2 11070 . . . . . . . 8 class 2
4 vs . . . . . . . . . 10 setvar 𝑠
54cv 1482 . . . . . . . . 9 class 𝑠
6 cmin 10266 . . . . . . . . 9 class
72, 5, 6co 6650 . . . . . . . 8 class (1 − 𝑠)
8 ccxp 24302 . . . . . . . 8 class 𝑐
93, 7, 8co 6650 . . . . . . 7 class (2↑𝑐(1 − 𝑠))
102, 9, 6co 6650 . . . . . 6 class (1 − (2↑𝑐(1 − 𝑠)))
11 vf . . . . . . . 8 setvar 𝑓
1211cv 1482 . . . . . . 7 class 𝑓
135, 12cfv 5888 . . . . . 6 class (𝑓𝑠)
14 cmul 9941 . . . . . 6 class ·
1510, 13, 14co 6650 . . . . 5 class ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠))
16 cn0 11292 . . . . . 6 class 0
17 cc0 9936 . . . . . . . . 9 class 0
18 vn . . . . . . . . . 10 setvar 𝑛
1918cv 1482 . . . . . . . . 9 class 𝑛
20 cfz 12326 . . . . . . . . 9 class ...
2117, 19, 20co 6650 . . . . . . . 8 class (0...𝑛)
222cneg 10267 . . . . . . . . . . 11 class -1
23 vk . . . . . . . . . . . 12 setvar 𝑘
2423cv 1482 . . . . . . . . . . 11 class 𝑘
25 cexp 12860 . . . . . . . . . . 11 class
2622, 24, 25co 6650 . . . . . . . . . 10 class (-1↑𝑘)
27 cbc 13089 . . . . . . . . . . 11 class C
2819, 24, 27co 6650 . . . . . . . . . 10 class (𝑛C𝑘)
2926, 28, 14co 6650 . . . . . . . . 9 class ((-1↑𝑘) · (𝑛C𝑘))
30 caddc 9939 . . . . . . . . . . 11 class +
3124, 2, 30co 6650 . . . . . . . . . 10 class (𝑘 + 1)
3231, 5, 8co 6650 . . . . . . . . 9 class ((𝑘 + 1)↑𝑐𝑠)
3329, 32, 14co 6650 . . . . . . . 8 class (((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3421, 33, 23csu 14416 . . . . . . 7 class Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠))
3519, 2, 30co 6650 . . . . . . . 8 class (𝑛 + 1)
363, 35, 25co 6650 . . . . . . 7 class (2↑(𝑛 + 1))
37 cdiv 10684 . . . . . . 7 class /
3834, 36, 37co 6650 . . . . . 6 class 𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
3916, 38, 18csu 14416 . . . . 5 class Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
4015, 39wceq 1483 . . . 4 wff ((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
41 cc 9934 . . . . 5 class
422csn 4177 . . . . 5 class {1}
4341, 42cdif 3571 . . . 4 class (ℂ ∖ {1})
4440, 4, 43wral 2912 . . 3 wff 𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))
45 ccncf 22679 . . . 4 class cn
4643, 41, 45co 6650 . . 3 class ((ℂ ∖ {1})–cn→ℂ)
4744, 11, 46crio 6610 . 2 class (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
481, 47wceq 1483 1 wff ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator