MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zetacvg Structured version   Visualization version   GIF version

Theorem zetacvg 24741
Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014.)
Hypotheses
Ref Expression
zetacvg.1 (𝜑𝑆 ∈ ℂ)
zetacvg.2 (𝜑 → 1 < (ℜ‘𝑆))
zetacvg.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
Assertion
Ref Expression
zetacvg (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Distinct variable groups:   𝑆,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem zetacvg
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . 2 ℕ = (ℤ‘1)
2 1zzd 11408 . 2 (𝜑 → 1 ∈ ℤ)
3 oveq1 6657 . . . . 5 (𝑛 = 𝑘 → (𝑛𝑐-(ℜ‘𝑆)) = (𝑘𝑐-(ℜ‘𝑆)))
4 eqid 2622 . . . . 5 (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆))) = (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))
5 ovex 6678 . . . . 5 (𝑘𝑐-(ℜ‘𝑆)) ∈ V
63, 4, 5fvmpt 6282 . . . 4 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
76adantl 482 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (𝑘𝑐-(ℜ‘𝑆)))
8 zetacvg.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (𝑘𝑐-𝑆))
9 nncn 11028 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
109adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
11 nnne0 11053 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
1211adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≠ 0)
13 zetacvg.1 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
1413negcld 10379 . . . . . . . 8 (𝜑 → -𝑆 ∈ ℂ)
1514adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -𝑆 ∈ ℂ)
1610, 12, 15cxpefd 24458 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) = (exp‘(-𝑆 · (log‘𝑘))))
178, 16eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = (exp‘(-𝑆 · (log‘𝑘))))
1817fveq2d 6195 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (abs‘(exp‘(-𝑆 · (log‘𝑘)))))
19 nnrp 11842 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
2019relogcld 24369 . . . . . . 7 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℝ)
2120recnd 10068 . . . . . 6 (𝑘 ∈ ℕ → (log‘𝑘) ∈ ℂ)
22 mulcl 10020 . . . . . 6 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
2314, 21, 22syl2an 494 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (-𝑆 · (log‘𝑘)) ∈ ℂ)
24 absef 14927 . . . . 5 ((-𝑆 · (log‘𝑘)) ∈ ℂ → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
2523, 24syl 17 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(exp‘(-𝑆 · (log‘𝑘)))) = (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))))
26 remul 13869 . . . . . . . 8 ((-𝑆 ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2714, 21, 26syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))))
2813renegd 13949 . . . . . . . . 9 (𝜑 → (ℜ‘-𝑆) = -(ℜ‘𝑆))
2920rered 13964 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℜ‘(log‘𝑘)) = (log‘𝑘))
3028, 29oveqan12d 6669 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
3120reim0d 13965 . . . . . . . . . 10 (𝑘 ∈ ℕ → (ℑ‘(log‘𝑘)) = 0)
3231oveq2d 6666 . . . . . . . . 9 (𝑘 ∈ ℕ → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = ((ℑ‘-𝑆) · 0))
33 imcl 13851 . . . . . . . . . . . 12 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℝ)
3433recnd 10068 . . . . . . . . . . 11 (-𝑆 ∈ ℂ → (ℑ‘-𝑆) ∈ ℂ)
3514, 34syl 17 . . . . . . . . . 10 (𝜑 → (ℑ‘-𝑆) ∈ ℂ)
3635mul01d 10235 . . . . . . . . 9 (𝜑 → ((ℑ‘-𝑆) · 0) = 0)
3732, 36sylan9eqr 2678 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘))) = 0)
3830, 37oveq12d 6668 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘-𝑆) · (ℜ‘(log‘𝑘))) − ((ℑ‘-𝑆) · (ℑ‘(log‘𝑘)))) = ((-(ℜ‘𝑆) · (log‘𝑘)) − 0))
3913recld 13934 . . . . . . . . . . 11 (𝜑 → (ℜ‘𝑆) ∈ ℝ)
4039renegcld 10457 . . . . . . . . . 10 (𝜑 → -(ℜ‘𝑆) ∈ ℝ)
4140recnd 10068 . . . . . . . . 9 (𝜑 → -(ℜ‘𝑆) ∈ ℂ)
42 mulcl 10020 . . . . . . . . 9 ((-(ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4341, 21, 42syl2an 494 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℂ)
4443subid1d 10381 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘𝑘)) − 0) = (-(ℜ‘𝑆) · (log‘𝑘)))
4527, 38, 443eqtrd 2660 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (ℜ‘(-𝑆 · (log‘𝑘))) = (-(ℜ‘𝑆) · (log‘𝑘)))
4645fveq2d 6195 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4741adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → -(ℜ‘𝑆) ∈ ℂ)
4810, 12, 47cxpefd 24458 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
4946, 48eqtr4d 2659 . . . 4 ((𝜑𝑘 ∈ ℕ) → (exp‘(ℜ‘(-𝑆 · (log‘𝑘)))) = (𝑘𝑐-(ℜ‘𝑆)))
5018, 25, 493eqtrd 2660 . . 3 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹𝑘)) = (𝑘𝑐-(ℜ‘𝑆)))
517, 50eqtr4d 2659 . 2 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (abs‘(𝐹𝑘)))
5210, 15cxpcld 24454 . . 3 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-𝑆) ∈ ℂ)
538, 52eqeltrd 2701 . 2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
54 2rp 11837 . . . . . . 7 2 ∈ ℝ+
55 1re 10039 . . . . . . . 8 1 ∈ ℝ
56 resubcl 10345 . . . . . . . 8 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ) → (1 − (ℜ‘𝑆)) ∈ ℝ)
5755, 39, 56sylancr 695 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℝ)
58 rpcxpcl 24422 . . . . . . 7 ((2 ∈ ℝ+ ∧ (1 − (ℜ‘𝑆)) ∈ ℝ) → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
5954, 57, 58sylancr 695 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ+)
6059rpcnd 11874 . . . . 5 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ)
61 zetacvg.2 . . . . . . . . 9 (𝜑 → 1 < (ℜ‘𝑆))
62 recl 13850 . . . . . . . . . . . 12 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℝ)
6362recnd 10068 . . . . . . . . . . 11 (𝑆 ∈ ℂ → (ℜ‘𝑆) ∈ ℂ)
6413, 63syl 17 . . . . . . . . . 10 (𝜑 → (ℜ‘𝑆) ∈ ℂ)
6564addid2d 10237 . . . . . . . . 9 (𝜑 → (0 + (ℜ‘𝑆)) = (ℜ‘𝑆))
6661, 65breqtrrd 4681 . . . . . . . 8 (𝜑 → 1 < (0 + (ℜ‘𝑆)))
67 0re 10040 . . . . . . . . . 10 0 ∈ ℝ
68 ltsubadd 10498 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (ℜ‘𝑆) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
6955, 67, 68mp3an13 1415 . . . . . . . . 9 ((ℜ‘𝑆) ∈ ℝ → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7039, 69syl 17 . . . . . . . 8 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ 1 < (0 + (ℜ‘𝑆))))
7166, 70mpbird 247 . . . . . . 7 (𝜑 → (1 − (ℜ‘𝑆)) < 0)
72 2re 11090 . . . . . . . . 9 2 ∈ ℝ
73 1lt2 11194 . . . . . . . . 9 1 < 2
74 cxplt 24440 . . . . . . . . 9 (((2 ∈ ℝ ∧ 1 < 2) ∧ ((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ)) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7572, 73, 74mpanl12 718 . . . . . . . 8 (((1 − (ℜ‘𝑆)) ∈ ℝ ∧ 0 ∈ ℝ) → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7657, 67, 75sylancl 694 . . . . . . 7 (𝜑 → ((1 − (ℜ‘𝑆)) < 0 ↔ (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0)))
7771, 76mpbid 222 . . . . . 6 (𝜑 → (2↑𝑐(1 − (ℜ‘𝑆))) < (2↑𝑐0))
7859rprege0d 11879 . . . . . . 7 (𝜑 → ((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))))
79 absid 14036 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℝ ∧ 0 ≤ (2↑𝑐(1 − (ℜ‘𝑆)))) → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
8078, 79syl 17 . . . . . 6 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) = (2↑𝑐(1 − (ℜ‘𝑆))))
81 2cn 11091 . . . . . . . . 9 2 ∈ ℂ
82 cxp0 24416 . . . . . . . . 9 (2 ∈ ℂ → (2↑𝑐0) = 1)
8381, 82ax-mp 5 . . . . . . . 8 (2↑𝑐0) = 1
8483eqcomi 2631 . . . . . . 7 1 = (2↑𝑐0)
8584a1i 11 . . . . . 6 (𝜑 → 1 = (2↑𝑐0))
8677, 80, 853brtr4d 4685 . . . . 5 (𝜑 → (abs‘(2↑𝑐(1 − (ℜ‘𝑆)))) < 1)
87 oveq2 6658 . . . . . . 7 (𝑛 = 𝑚 → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
88 eqid 2622 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))
89 ovex 6678 . . . . . . 7 ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) ∈ V
9087, 88, 89fvmpt 6282 . . . . . 6 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9190adantl 482 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
9260, 86, 91geolim 14601 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))))
93 seqex 12803 . . . . 5 seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ V
94 ovex 6678 . . . . 5 (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) ∈ V
9593, 94breldm 5329 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ⇝ (1 / (1 − (2↑𝑐(1 − (ℜ‘𝑆))))) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
9692, 95syl 17 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ )
97 rpcxpcl 24422 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ -(ℜ‘𝑆) ∈ ℝ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9819, 40, 97syl2anr 495 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ+)
9998rpred 11872 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑘𝑐-(ℜ‘𝑆)) ∈ ℝ)
1007, 99eqeltrd 2701 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) ∈ ℝ)
10198rpge0d 11876 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (𝑘𝑐-(ℜ‘𝑆)))
102101, 7breqtrrd 4681 . . . 4 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
103 nnre 11027 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
104103lep1d 10955 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≤ (𝑘 + 1))
10519reeflogd 24370 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) = 𝑘)
106 peano2nn 11032 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
107106nnrpd 11870 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℝ+)
108107reeflogd 24370 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (exp‘(log‘(𝑘 + 1))) = (𝑘 + 1))
109104, 105, 1083brtr4d 4685 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1))))
110107relogcld 24369 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℝ)
111 efle 14848 . . . . . . . . . . . 12 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
11220, 110, 111syl2anc 693 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ (exp‘(log‘𝑘)) ≤ (exp‘(log‘(𝑘 + 1)))))
113109, 112mpbird 247 . . . . . . . . . 10 (𝑘 ∈ ℕ → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
114113adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ≤ (log‘(𝑘 + 1)))
11520adantl 482 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘𝑘) ∈ ℝ)
116106adantl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
117116nnrpd 11870 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ+)
118117relogcld 24369 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (log‘(𝑘 + 1)) ∈ ℝ)
11939adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (ℜ‘𝑆) ∈ ℝ)
12067a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ ℝ)
12155a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
122 0lt1 10550 . . . . . . . . . . . . 13 0 < 1
123122a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 1)
124120, 121, 39, 123, 61lttrd 10198 . . . . . . . . . . 11 (𝜑 → 0 < (ℜ‘𝑆))
125124adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 0 < (ℜ‘𝑆))
126 lemul2 10876 . . . . . . . . . 10 (((log‘𝑘) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ ∧ ((ℜ‘𝑆) ∈ ℝ ∧ 0 < (ℜ‘𝑆))) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
127115, 118, 119, 125, 126syl112anc 1330 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((log‘𝑘) ≤ (log‘(𝑘 + 1)) ↔ ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1)))))
128114, 127mpbid 222 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))))
129 remulcl 10021 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
13039, 20, 129syl2an 494 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
131 remulcl 10021 . . . . . . . . . 10 (((ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
13239, 110, 131syl2an 494 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
133130, 132lenegd 10606 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((ℜ‘𝑆) · (log‘𝑘)) ≤ ((ℜ‘𝑆) · (log‘(𝑘 + 1))) ↔ -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘))))
134128, 133mpbid 222 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → -((ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ -((ℜ‘𝑆) · (log‘𝑘)))
135110recnd 10068 . . . . . . . 8 (𝑘 ∈ ℕ → (log‘(𝑘 + 1)) ∈ ℂ)
136 mulneg1 10466 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘(𝑘 + 1)) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
13764, 135, 136syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) = -((ℜ‘𝑆) · (log‘(𝑘 + 1))))
138 mulneg1 10466 . . . . . . . 8 (((ℜ‘𝑆) ∈ ℂ ∧ (log‘𝑘) ∈ ℂ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
13964, 21, 138syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) = -((ℜ‘𝑆) · (log‘𝑘)))
140134, 137, 1393brtr4d 4685 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)))
141 remulcl 10021 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘(𝑘 + 1)) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
14240, 110, 141syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ)
143 remulcl 10021 . . . . . . . 8 ((-(ℜ‘𝑆) ∈ ℝ ∧ (log‘𝑘) ∈ ℝ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
14440, 20, 143syl2an 494 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ)
145 efle 14848 . . . . . . 7 (((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ∈ ℝ ∧ (-(ℜ‘𝑆) · (log‘𝑘)) ∈ ℝ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
146142, 144, 145syl2anc 693 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((-(ℜ‘𝑆) · (log‘(𝑘 + 1))) ≤ (-(ℜ‘𝑆) · (log‘𝑘)) ↔ (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘)))))
147140, 146mpbid 222 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))) ≤ (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
148 oveq1 6657 . . . . . . . 8 (𝑛 = (𝑘 + 1) → (𝑛𝑐-(ℜ‘𝑆)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
149 ovex 6678 . . . . . . . 8 ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) ∈ V
150148, 4, 149fvmpt 6282 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
151116, 150syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)))
152116nncnd 11036 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℂ)
153116nnne0d 11065 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ≠ 0)
154152, 153, 47cxpefd 24458 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 + 1)↑𝑐-(ℜ‘𝑆)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
155151, 154eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) = (exp‘(-(ℜ‘𝑆) · (log‘(𝑘 + 1)))))
1567, 48eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘) = (exp‘(-(ℜ‘𝑆) · (log‘𝑘))))
157147, 155, 1563brtr4d 4685 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(𝑘 + 1)) ≤ ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘𝑘))
15857recnd 10068 . . . . . . . . . . 11 (𝜑 → (1 − (ℜ‘𝑆)) ∈ ℂ)
159158adantr 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℂ)
160 nn0re 11301 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0𝑚 ∈ ℝ)
161160adantl 482 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℝ)
162161recnd 10068 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℂ)
163159, 162mulcomd 10061 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((1 − (ℜ‘𝑆)) · 𝑚) = (𝑚 · (1 − (ℜ‘𝑆))))
164163oveq2d 6666 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))))
16554a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → 2 ∈ ℝ+)
166165, 161, 159cxpmuld 24480 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐(𝑚 · (1 − (ℜ‘𝑆)))) = ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))))
167 simpr 477 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
168 cxpexp 24414 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
16981, 167, 168sylancr 695 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐𝑚) = (2↑𝑚))
170 ax-1cn 9994 . . . . . . . . . . 11 1 ∈ ℂ
17164adantr 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → (ℜ‘𝑆) ∈ ℂ)
172 negsub 10329 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (ℜ‘𝑆) ∈ ℂ) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
173170, 171, 172sylancr 695 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (1 + -(ℜ‘𝑆)) = (1 − (ℜ‘𝑆)))
174173eqcomd 2628 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) = (1 + -(ℜ‘𝑆)))
175169, 174oveq12d 6668 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐𝑚)↑𝑐(1 − (ℜ‘𝑆))) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
176164, 166, 1753eqtrd 2660 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))))
17757adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (1 − (ℜ‘𝑆)) ∈ ℝ)
178165, 177, 162cxpmuld 24480 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑐((1 − (ℜ‘𝑆)) · 𝑚)) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚))
179 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
180 nnexpcl 12873 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
181179, 180mpan 706 . . . . . . . . . 10 (𝑚 ∈ ℕ0 → (2↑𝑚) ∈ ℕ)
182181adantl 482 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
183182nncnd 11036 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℂ)
184182nnne0d 11065 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ≠ 0)
185 1cnd 10056 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → 1 ∈ ℂ)
18641adantr 481 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ0) → -(ℜ‘𝑆) ∈ ℂ)
187183, 184, 185, 186cxpaddd 24463 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐(1 + -(ℜ‘𝑆))) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
188176, 178, 1873eqtr3d 2664 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
189 cxpexp 24414 . . . . . . 7 (((2↑𝑐(1 − (ℜ‘𝑆))) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
19060, 189sylan 488 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑐𝑚) = ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚))
191183cxp1d 24452 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚)↑𝑐1) = (2↑𝑚))
192191oveq1d 6665 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → (((2↑𝑚)↑𝑐1) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
193188, 190, 1923eqtr3d 2664 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑚) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
194179, 167, 180sylancr 695 . . . . . . 7 ((𝜑𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
195 oveq1 6657 . . . . . . . 8 (𝑛 = (2↑𝑚) → (𝑛𝑐-(ℜ‘𝑆)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
196 ovex 6678 . . . . . . . 8 ((2↑𝑚)↑𝑐-(ℜ‘𝑆)) ∈ V
197195, 4, 196fvmpt 6282 . . . . . . 7 ((2↑𝑚) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
198194, 197syl 17 . . . . . 6 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚)) = ((2↑𝑚)↑𝑐-(ℜ‘𝑆)))
199198oveq2d 6666 . . . . 5 ((𝜑𝑚 ∈ ℕ0) → ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))) = ((2↑𝑚) · ((2↑𝑚)↑𝑐-(ℜ‘𝑆))))
200193, 91, 1993eqtr4d 2666 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))‘𝑚) = ((2↑𝑚) · ((𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))‘(2↑𝑚))))
201100, 102, 157, 200climcnds 14583 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ ↔ seq0( + , (𝑛 ∈ ℕ0 ↦ ((2↑𝑐(1 − (ℜ‘𝑆)))↑𝑛))) ∈ dom ⇝ ))
20296, 201mpbird 247 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑛𝑐-(ℜ‘𝑆)))) ∈ dom ⇝ )
2031, 2, 51, 53, 202abscvgcvg 14551 1 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  +crp 11832  seqcseq 12801  cexp 12860  cre 13837  cim 13838  abscabs 13974  cli 14215  expce 14792  logclog 24301  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304
This theorem is referenced by:  lgamgulmlem4  24758
  Copyright terms: Public domain W3C validator