| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df3nandALT2 | Structured version Visualization version GIF version | ||
| Description: The double nand expressed in terms of negation and and not. (Contributed by Anthony Hart, 13-Sep-2011.) |
| Ref | Expression |
|---|---|
| df3nandALT2 | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3nand 32395 | . 2 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 2 | imnan 438 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | imbi2i 326 | . 2 ⊢ ((𝜑 → (𝜓 → ¬ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ∧ 𝜒))) |
| 4 | imnan 438 | . . 3 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 5 | 3anass 1042 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 6 | 4, 5 | xchbinxr 325 | . 2 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| 7 | 1, 3, 6 | 3bitri 286 | 1 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ⊼ w3nand 32394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-3nand 32395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |