| Mathbox for Anthony Hart |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > andnand1 | Structured version Visualization version GIF version | ||
| Description: Double and in terms of double nand. (Contributed by Anthony Hart, 2-Sep-2011.) |
| Ref | Expression |
|---|---|
| andnand1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ⊼ (𝜑 ⊼ 𝜓 ⊼ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 1042 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
| 2 | pm4.63 437 | . . . 4 ⊢ (¬ (𝜓 → ¬ 𝜒) ↔ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | anbi2i 730 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝜓 → ¬ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) |
| 4 | annim 441 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝜓 → ¬ 𝜒)) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 5 | 1, 3, 4 | 3bitr2i 288 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) |
| 6 | df-3nand 32395 | . . 3 ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 7 | 6 | notbii 310 | . 2 ⊢ (¬ (𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ¬ (𝜑 → (𝜓 → ¬ 𝜒))) |
| 8 | nannot 1453 | . 2 ⊢ (¬ (𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ⊼ (𝜑 ⊼ 𝜓 ⊼ 𝜒))) | |
| 9 | 5, 7, 8 | 3bitr2i 288 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ⊼ (𝜑 ⊼ 𝜓 ⊼ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ⊼ wnan 1447 ⊼ w3nand 32394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-nan 1448 df-3nand 32395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |