MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdmf Structured version   Visualization version   GIF version

Theorem dfdmf 5317
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfdmf.1 𝑥𝐴
dfdmf.2 𝑦𝐴
Assertion
Ref Expression
dfdmf dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfdmf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5124 . 2 dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣}
2 nfcv 2764 . . . . 5 𝑦𝑤
3 dfdmf.2 . . . . 5 𝑦𝐴
4 nfcv 2764 . . . . 5 𝑦𝑣
52, 3, 4nfbr 4699 . . . 4 𝑦 𝑤𝐴𝑣
6 nfv 1843 . . . 4 𝑣 𝑤𝐴𝑦
7 breq2 4657 . . . 4 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvex 2272 . . 3 (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦)
98abbii 2739 . 2 {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦}
10 nfcv 2764 . . . . 5 𝑥𝑤
11 dfdmf.1 . . . . 5 𝑥𝐴
12 nfcv 2764 . . . . 5 𝑥𝑦
1310, 11, 12nfbr 4699 . . . 4 𝑥 𝑤𝐴𝑦
1413nfex 2154 . . 3 𝑥𝑦 𝑤𝐴𝑦
15 nfv 1843 . . 3 𝑤𝑦 𝑥𝐴𝑦
16 breq1 4656 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1716exbidv 1850 . . 3 (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦))
1814, 15, 17cbvab 2746 . 2 {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
191, 9, 183eqtri 2648 1 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wex 1704  {cab 2608  wnfc 2751   class class class wbr 4653  dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-dm 5124
This theorem is referenced by:  dmopab  5335
  Copyright terms: Public domain W3C validator