| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin3 | Structured version Visualization version GIF version | ||
| Description: Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| dfin3 | ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ddif 3742 | . 2 ⊢ (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵)))) = (𝐴 ∖ (V ∖ 𝐵)) | |
| 2 | dfun2 3859 | . . . 4 ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵))) | |
| 3 | ddif 3742 | . . . . . 6 ⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | |
| 4 | 3 | difeq1i 3724 | . . . . 5 ⊢ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵)) = (𝐴 ∖ (V ∖ 𝐵)) |
| 5 | 4 | difeq2i 3725 | . . . 4 ⊢ (V ∖ ((V ∖ (V ∖ 𝐴)) ∖ (V ∖ 𝐵))) = (V ∖ (𝐴 ∖ (V ∖ 𝐵))) |
| 6 | 2, 5 | eqtri 2644 | . . 3 ⊢ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) = (V ∖ (𝐴 ∖ (V ∖ 𝐵))) |
| 7 | 6 | difeq2i 3725 | . 2 ⊢ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) = (V ∖ (V ∖ (𝐴 ∖ (V ∖ 𝐵)))) |
| 8 | dfin2 3860 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | |
| 9 | 1, 7, 8 | 3eqtr4ri 2655 | 1 ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 Vcvv 3200 ∖ cdif 3571 ∪ cun 3572 ∩ cin 3573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 |
| This theorem is referenced by: difindi 3881 |
| Copyright terms: Public domain | W3C validator |