| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd3ir | Structured version Visualization version GIF version | ||
| Description: Right-to-left inference form of dfvd3 38807. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd3ir.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| dfvd3ir | ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfvd3ir.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | dfvd3 38807 | . 2 ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | |
| 3 | 1, 2 | mpbir 221 | 1 ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ( wvd3 38803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 df-vd3 38806 |
| This theorem is referenced by: vd03 38824 vd13 38826 vd23 38827 in3an 38836 idn3 38840 gen31 38846 e223 38860 e333 38960 e233 38992 e323 38993 |
| Copyright terms: Public domain | W3C validator |