| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjiunb | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖 ∈ 𝐴 and 𝑥 ∈ 𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.) |
| Ref | Expression |
|---|---|
| disjiunb.1 | ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) |
| disjiunb.2 | ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| disjiunb | ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjiunb.1 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐵 = 𝐷) | |
| 2 | disjiunb.2 | . . 3 ⊢ (𝑖 = 𝑗 → 𝐶 = 𝐸) | |
| 3 | 1, 2 | iuneq12d 4546 | . 2 ⊢ (𝑖 = 𝑗 → ∪ 𝑥 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐷 𝐸) |
| 4 | 3 | disjor 4634 | 1 ⊢ (Disj 𝑖 ∈ 𝐴 ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (∪ 𝑥 ∈ 𝐵 𝐶 ∩ ∪ 𝑥 ∈ 𝐷 𝐸) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∨ wo 383 = wceq 1483 ∀wral 2912 ∩ cin 3573 ∅c0 3915 ∪ ciun 4520 Disj wdisj 4620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-iun 4522 df-disj 4621 |
| This theorem is referenced by: disjiund 4643 |
| Copyright terms: Public domain | W3C validator |