MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiunb Structured version   Visualization version   GIF version

Theorem disjiunb 4642
Description: Two ways to say that a collection of index unions 𝐶(𝑖, 𝑥) for 𝑖𝐴 and 𝑥𝐵 is disjoint. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
disjiunb.1 (𝑖 = 𝑗𝐵 = 𝐷)
disjiunb.2 (𝑖 = 𝑗𝐶 = 𝐸)
Assertion
Ref Expression
disjiunb (Disj 𝑖𝐴 𝑥𝐵 𝐶 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ ( 𝑥𝐵 𝐶 𝑥𝐷 𝐸) = ∅))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑗,𝑥   𝐶,𝑗   𝑖,𝐸   𝐷,𝑖,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑖)   𝐶(𝑥,𝑖)   𝐷(𝑗)   𝐸(𝑥,𝑗)

Proof of Theorem disjiunb
StepHypRef Expression
1 disjiunb.1 . . 3 (𝑖 = 𝑗𝐵 = 𝐷)
2 disjiunb.2 . . 3 (𝑖 = 𝑗𝐶 = 𝐸)
31, 2iuneq12d 4546 . 2 (𝑖 = 𝑗 𝑥𝐵 𝐶 = 𝑥𝐷 𝐸)
43disjor 4634 1 (Disj 𝑖𝐴 𝑥𝐵 𝐶 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ ( 𝑥𝐵 𝐶 𝑥𝐷 𝐸) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383   = wceq 1483  wral 2912  cin 3573  c0 3915   ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iun 4522  df-disj 4621
This theorem is referenced by:  disjiund  4643
  Copyright terms: Public domain W3C validator