| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ecase2d | Structured version Visualization version GIF version | ||
| Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Dec-2012.) |
| Ref | Expression |
|---|---|
| ecase2d.1 | ⊢ (𝜑 → 𝜓) |
| ecase2d.2 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| ecase2d.3 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) |
| ecase2d.4 | ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| ecase2d | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜏 → 𝜏)) | |
| 2 | ecase2d.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 3 | ecase2d.2 | . . . . 5 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | |
| 4 | 3 | pm2.21d 118 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜏)) |
| 5 | 2, 4 | mpand 711 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜏)) |
| 6 | ecase2d.3 | . . . . 5 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) | |
| 7 | 6 | pm2.21d 118 | . . . 4 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜏)) |
| 8 | 2, 7 | mpand 711 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 9 | 5, 8 | jaod 395 | . 2 ⊢ (𝜑 → ((𝜒 ∨ 𝜃) → 𝜏)) |
| 10 | ecase2d.4 | . 2 ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) | |
| 11 | 1, 9, 10 | mpjaod 396 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |