![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpjaod | Structured version Visualization version GIF version |
Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
jaod.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jaod.2 | ⊢ (𝜑 → (𝜃 → 𝜒)) |
jaod.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜃)) |
Ref | Expression |
---|---|
mpjaod | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaod.3 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜃)) | |
2 | jaod.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | jaod.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) | |
4 | 2, 3 | jaod 395 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) |
5 | 1, 4 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: ecase2d 981 opth1 4944 sorpssun 6944 sorpssin 6945 reldmtpos 7360 dftpos4 7371 oaass 7641 nnawordex 7717 omabs 7727 suplub2 8367 en3lplem2 8512 cantnflt 8569 cantnfp1lem3 8577 tcrank 8747 cardaleph 8912 fpwwe2 9465 gchpwdom 9492 grur1 9642 indpi 9729 nn1suc 11041 nnsub 11059 seqid 12846 seqz 12849 faclbnd 13077 facavg 13088 bcval5 13105 hashnnn0genn0 13131 hashfzo 13216 sqrlem6 13988 resqrex 13991 absmod0 14043 absz 14051 iserex 14387 fsumf1o 14454 fsumss 14456 fsumcl2lem 14462 fsumadd 14470 fsummulc2 14516 fsumconst 14522 fsumrelem 14539 isumsplit 14572 fprodf1o 14676 fprodss 14678 fprodcl2lem 14680 fprodmul 14690 fproddiv 14691 fprodconst 14708 fprodn0 14709 absdvdsb 15000 dvdsabsb 15001 gcdabs1 15251 bezoutlem1 15256 bezoutlem2 15257 isprm5 15419 pcabs 15579 pockthg 15610 prmreclem5 15624 vdwlem13 15697 0ram 15724 ram0 15726 prmlem0 15812 mulgnn0ass 17578 psgnunilem2 17915 mndodcongi 17962 oddvdsnn0 17963 odnncl 17964 efgredlemb 18159 gsumzres 18310 gsumzcl2 18311 gsumzf1o 18313 gsumzaddlem 18321 gsumconst 18334 gsumzmhm 18337 gsummulglem 18341 gsumzoppg 18344 pgpfac1lem5 18478 mplsubrglem 19439 gsumfsum 19813 zringlpirlem1 19832 ordthaus 21188 icccmplem2 22626 metdstri 22654 ioombl 23333 itgabs 23601 dvlip 23756 dvge0 23769 dvivthlem1 23771 dvcnvrelem1 23780 ply1rem 23923 dgrcolem2 24030 quotcan 24064 sinq12ge0 24260 argregt0 24356 argrege0 24357 scvxcvx 24712 bpos1lem 25007 bposlem3 25011 lgseisenlem2 25101 frgrregord013 27253 htthlem 27774 atcvati 29245 sinccvglem 31566 noextendseq 31820 noetalem3 31865 midofsegid 32211 outsideofeq 32237 hfun 32285 ordcmp 32446 icoreclin 33205 itgabsnc 33479 dvasin 33496 cvrat 34708 4atlem10 34892 4atlem12 34898 cdleme18d 35582 cdleme22b 35629 cdleme32e 35733 lclkrlem2e 36800 pell1234qrdich 37425 clsk1indlem3 38341 suctrALT 39061 wallispilem3 40284 bgoldbtbnd 41697 |
Copyright terms: Public domain | W3C validator |