HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  elbdop Structured version   Visualization version   GIF version

Theorem elbdop 28719
Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
elbdop (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))

Proof of Theorem elbdop
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3 (𝑡 = 𝑇 → (normop𝑡) = (normop𝑇))
21breq1d 4663 . 2 (𝑡 = 𝑇 → ((normop𝑡) < +∞ ↔ (normop𝑇) < +∞))
3 df-bdop 28701 . 2 BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
42, 3elrab2 3366 1 (𝑇 ∈ BndLinOp ↔ (𝑇 ∈ LinOp ∧ (normop𝑇) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  +∞cpnf 10071   < clt 10074  normopcnop 27802  LinOpclo 27804  BndLinOpcbo 27805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-bdop 28701
This theorem is referenced by:  bdopln  28720  nmopre  28729  elbdop2  28730  0bdop  28852
  Copyright terms: Public domain W3C validator