| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfv | Structured version Visualization version GIF version | ||
| Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| elfv | ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fv2 6186 | . . 3 ⊢ (𝐹‘𝐵) = ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
| 2 | 1 | eleq2i 2693 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ 𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)}) |
| 3 | eluniab 4447 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 4 | 2, 3 | bitri 264 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∀wal 1481 ∃wex 1704 ∈ wcel 1990 {cab 2608 ∪ cuni 4436 class class class wbr 4653 ‘cfv 5888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-sn 4178 df-uni 4437 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: fv3 6206 |
| Copyright terms: Public domain | W3C validator |