| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elim2if | Structured version Visualization version GIF version | ||
| Description: Elimination of two conditional operators contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| elim2if.1 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) |
| elim2if.2 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) |
| elim2if.3 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) |
| Ref | Expression |
|---|---|
| elim2if | ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4092 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴) | |
| 2 | elim2if.1 | . . 3 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| 4 | iffalse 4095 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, 𝐶)) | |
| 5 | 4 | eqeq1d 2624 | . . . 4 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 ↔ if(𝜓, 𝐵, 𝐶) = 𝐵)) |
| 6 | elim2if.2 | . . . 4 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) | |
| 7 | 5, 6 | syl6bir 244 | . . 3 ⊢ (¬ 𝜑 → (if(𝜓, 𝐵, 𝐶) = 𝐵 → (𝜒 ↔ 𝜏))) |
| 8 | 4 | eqeq1d 2624 | . . . 4 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 ↔ if(𝜓, 𝐵, 𝐶) = 𝐶)) |
| 9 | elim2if.3 | . . . 4 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) | |
| 10 | 8, 9 | syl6bir 244 | . . 3 ⊢ (¬ 𝜑 → (if(𝜓, 𝐵, 𝐶) = 𝐶 → (𝜒 ↔ 𝜂))) |
| 11 | 7, 10 | elimifd 29362 | . 2 ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂)))) |
| 12 | 3, 11 | cases 992 | 1 ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ifcif 4086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: elim2ifim 29364 |
| Copyright terms: Public domain | W3C validator |